

Made by batuexams.com

at MET Bhujbal Knowledege City

Engg Physics Department

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

UNIT I

oSCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

- wave is a disturbance which travels through avail space or medium. In a wave motion, energy is transferred from one place to other place due to the repeated periodic motion of the medium particles
- When a wave passes the medium particles vibrate or oscillate about their mean position. The oscillating $\begin{array}{ccc} 1 & = & 2i \ \end{array}$ particles perform a periodic motion called **Harmonic**
Motion Motion
- The three features associated with a Low Energy Waves are (i) energy is transmitted, (ii) medium is not transmitted and (iii) return to equilibrium is involved.
- Although the medium particles vibrate about their mean position, they transfer energy by transferring motion from one particle to the another at a regular interval of time.
- For propagation of a wave the medium must satisfy the following conditions:
	-
	- \triangleright The medium particles must have inertia so that it can be considered as **Free Oscillation**.
	- particles
- The understanding of wave is an important aspect as it transters the energy from one place to the other place. The most common types of waves are light, sound and heat etc. As wave propagation involves the oscillations i.e. $f = -ky$... (1.3)
of medium particles, we must understand the According to Newton's law oscillations to understand the concept of wave propagation. $f = ma$... (1.4)

The motion of pendulum, piston of an engine, earth Comparing equations (1.3) and (1.5);
around the sun follows the same path and repeats it after equal intervals of time. Such type of motion is called as Periodic Motion. The periodic motion can be either circular or linear depending upon whether it moves along circular path or linear path.

1.1 INTRODUCTION TO OSCILLATIONS **When we give a push to a pendulum or a string fixed** at two ends is plucked and left free to oscillate, it oscillates with a frequency given by,

h a frequency given by,
\n
$$
f = \frac{1}{2\pi} \sqrt{\frac{g}{l}} \dots \text{ for pendulum} \dots (1.1)
$$
\n
$$
f = \frac{1}{2l} \sqrt{\frac{1}{m}} \dots \text{ for string} \dots (1.2)
$$

- This frequency is called Natural Frequency ot the vibrating system. The frequency with which a body vbrates freely at its own is called its Natural Fequency.
- If no resistance is offered to the movement of the vibrating body, the body will keep on vibrating indefinitely. Such a vibration is called Free Oscillation or Vibration.
- In a free oscillation or vibration, whenever a body is disturbed, it vibrates with its own natural frequency for intinite time. But in practice, frictioniess system is not \triangleright The medium must be elastic, so that it returns to its possible and amplitude of vibrating body decreases original position after oscillation. slowly to zero. When the friction is very less, the system
- Consider motion of a particle of mass m on which a The medium must be viscous so that the energy restoring force is acting, such that the particle performs exchange takes place between the medium harmonic oscillation. For harmonic oscillations the harmonic oscillation. For harmonic oscillations, the restoring force is linearly proportional to the displacement i.e. $-$ ky where k is the restoring force constant ànd negative sign indicates that it acts in opposite direction to displacement

$$
f = ma \qquad \qquad \dots (1.4)
$$

1.2 FREE OSCILLATION [Dec. 18] i.e.
$$
f = m \frac{d^2y}{dt^2}
$$
 ... (1.5)

$$
\frac{md^{2}y}{dt^{2}} = -ky
$$

i.e.
$$
\frac{d^{2}y}{dt^{2}} + \frac{k}{m}y = 0
$$

Let, $\frac{k}{m} = \omega^2$... (1.6) Using equation (1.6), Let, $\frac{d^2y}{dt^2} + \omega^2y = 0$... (1.13)
 $\therefore \frac{d^2y}{dt^2} + \omega^2y = 0$... (1.13)

The solution of equation (1.7) is given in the form, oscillation is constant or independent of time. $y = e^{at}$
 $\frac{dy}{dt} = \alpha e^{at}$
 \bullet In ideal situation, the resistance offered to the escillation is zero and therefore the oscillations will \mathcal{L} and $\frac{d^2y}{dt^2} = \alpha^2 e^{\alpha t}$... (1.8) substituting in equation (1.7) $\alpha^2 e^{at} + \omega^2 e^{at} = 0$
i.e. $(\alpha^2 + \omega^2) e^{at} = 0$
i.e. $(\alpha^2 + \omega^2) e^{at} = 0$
i.e. $(\alpha^2 + \omega^2) e^{at} = 0$ $e^{\alpha t} \neq 0$ As, $\alpha^2 + \omega^2 = 0$ $\tilde{\chi}$ $\alpha^2 = -\omega^2$ \mathcal{L} $\alpha = \pm i\omega$ Thus the general solution of equation (1.7) is given by \qquad (i) Restoring force, - ky $y = Ae^{i\omega t} + Be^{-i\omega t}$... (1.10) (ii) Resistive force, $-r \frac{dy}{dt}$ Where, A and B are constants to be determined. $y = A (\cos \omega t + i \sin \omega t)$
 $+ B (\cos \omega t + i \sin \omega t)$ forces are balanced by Newton's force,
 $y = A (\cos \omega t + i \sin \omega t)$ forces are balanced by Newton's force, \mathcal{I} $y = (A + B) \cos \omega t + i (A - B) \sin \omega t$ i.e. ma = -ky-r $\frac{dy}{dt}$... (1.14) Let $A + B = R \sin \phi$ and $i(A-B) = R \cos \phi$
 \therefore $y = R \sin \phi \cos \omega t + R \cos \phi \sin \omega t$ $\frac{d^2}{dx^2}$ $y = R \sin \phi \cos \omega t + R \cos \phi \sin \omega t$ $y = R \sin (\omega t + \phi)$... (1.11) dt g, From equation (1.11) it is clear that R is the maximum value of y. Thus R is the amplitude of oscillation. The value of y repeats when t changes by $2\pi/\omega$, i. e.
 $y = R \sin [\omega (t + 2\pi/\omega) + \phi]$
 $y = R \sin \frac{1}{2} (\omega + \phi) + 2\pi \cos \frac{1}{2}$ $y = R \sin [(\omega t + \phi) + 2\pi]$ $y = R \sin (\omega t + \phi)$ $y = y$

Thus after time interval of $2\pi/a$, the motion will repeat itself. The internal $2\pi/\omega$ is called the periodic time T.
 $T = 2\pi/\omega$... (1.12)

 \therefore T = $2\pi/\omega$
The frequency, $T = 2\pi/\omega$... (1.12)
The frequency, and $\frac{d^2y}{dt^2} = A\alpha^2 e^{\alpha t}$ $f = \frac{1}{T} = \frac{\omega}{2\pi}$

ENGINEERING PHYSICS (BATU) (1.2) OSCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

$$
f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}
$$
 ... (1.13)

- continue for indefinite time. But in practice the amplitude of oscillation keeps on decreasing due to resistive forces and hence oscillations will die out after will depend on the magnitude of the resistive force.
- A motion damped by resistive force results into Damped Oscillation.
- The resistive force is proportional to the velocity and in the direction opposite to direction of the motion. A ... (1.9) damped system has following forces :
ven by (1.9) Restoring force. - kv

Let
$$
mg = -ky - r \frac{dt}{dt}
$$
 ...(1.14)
\n
$$
\frac{d^2y}{dt^2} + r \frac{dy}{dt} + ky = 0
$$
\nLet $\frac{r}{m} = 2b$ and $\frac{k}{m} = \omega^2$...(1.15)
\n $\therefore \frac{d^2y}{dt^2} + 2b \frac{dy}{dt} + \omega^2y = 0$...(1.16)
\n $\therefore y = Ae^{at}$...(1.17)

where, A and α are arbitrary constants. Differentiating equation (1.17),

$$
\frac{dy}{dt} = A \alpha e^{at}
$$

$$
\frac{d^2y}{dx^2} = A e^{2} e^{at}
$$

: Equation (4) becomes,

 $A\alpha^2 e^{at} + 2b A \alpha e^{at} + \omega^2 A e^{at} = 0$

ENGINEERING PHYSICS (BATU) **oscillation, ultrasonics and dielectric materials** displacement approaches zero as t increases. Such a

∴ Ae^{α^t} (α² + 2bα + ω²) = 0

\nBut,
$$
Ae^{αt ≠ 0
$$

\n∴ Roots of equation (1.18) gives

\n∴ Rtheta = $\frac{-2b \pm \sqrt{(4b^2 - 4\alpha^2)}}{2}$

\n∴ Rtheta = $\frac{-b \pm \sqrt{(b^2 - \omega^2)}}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

\n∴ Rtheta = $\frac{(b + \sqrt{(b^2 - \omega^2)})t}{2}$ ⇒

 $x + Be^{x-2}$ is \cdots (1.20) where A and B are arbitrary constant.
 Case I: Over Damped or Dead Beat :

- When $b^2 > \omega^2$, $\sqrt{(b^2 \omega^2)}$ is real and less than b. In this case power of both the exponents is negative. Thus the displacement y consists of two terms both are decreasing exponentially. This type of motion is called $y = e^{-bt}$ (a sin $\phi \cos \beta t + a \cos \phi \sin \beta t$)
- Example of such oscillation is pendulum in thick oil. $y = e^{-bt} a \sin (\beta t + \phi)$... (123) Fig. 1.1 shows over damped oscillation.

-
- When $b^2 = \omega^2$, if we put $b^2 = \omega^2$ in the solution it will $\begin{array}{c} \text{air, electric} \\ \text{oscillation.} \end{array}$ not satisfy the differential equation. Therefore, assume that $\sqrt{(b^2 - \omega^2)}$ is not zero but is tending to zero i.e. equal to a very small quantity h.

Therefore solution becomes, from equation (1.20)
 $y = Ae^{(-b+b)t} + Be^{(-b-h)t}$

$$
y = Ae^{(-b+h)t} + Be^{(-b-h)t} \qquad \dots (1.21)
$$

$$
y = e^{-bt} (Ae^{ht} + Be^{-ht})
$$

$$
y = e^{-bt} [A (1 + ht + ...) + B (1 - ht + ...)]
$$

\n
$$
y = e^{-bt} [(A + B) + ht (A - B) + ...]
$$

$$
y = e^{ax} [(A + B) + ht (A - B) + ...]
$$

$$
y = e^{-x} [s + ut]
$$

$$
S = (A + B)
$$
 and $u = h (A - B)$

The equation (1.22) gives the solution of the differential equation. In equation (1.22) as t increases the factor e^{-bt} decreases and $[S + ut]$ increases. Therefore the

e 0
\n10
\n118) gives
\n
$$
\frac{-2b \pm \sqrt{(4b^2 - 40^3)}}{2}
$$
\n
$$
= -b \pm \sqrt{(b^2 - \omega^2)}
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \omega^2})t
$$
\n
$$
= (b + \sqrt{b^2 - \
$$

- The equation represents the simple harmonic motion will equitable at e^{-bt} . The amplitude of motion will with amplitude aeth. The amplitude of motion will
continuously decrease because of the factor eth. The factor e^{-bt} is called the damping factor and b the damping coefficient.
- The decay in the amplitude is decided by the damping Fig. 1.1: Over damped oscillation is called Under Damped.
- **Case II: Critically Damped:** $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Example of under damped oscillation is pendulum in air, electric oscillator etc. Fig. 1.2 shows under damped

$$
\sum_{i=1}^n \frac{1}{\sqrt{2}} \sum_{i=1}^n \frac{1}{\sqrt{2}}
$$

Fig. 12:Under damped oscillation

body vibrates at its own frequency without any external force. But the situation will be totally different when the body is subjected to an external force. Here the

ENGINEERING PHYSICS(BATU) (14) oscLLATION, ULTRASONICS AND DIELECTRIC MATERIALS

body oscillates because it is subjected to an external periodic force. Such oscillation is called Forced
Oscillation.
A forced oscillation can be defined as the oscillation in

which a body vibrates with a frequency other than its natural frequency under the action of an external periodic force.

In a forced oscillation, the forces acting on the body are

(i) Restoring force, - kx.

(ii) Resistive force, $-\frac{rdy}{dt}$

Dividing equation (1.28) by (1.27), we get, tüi) External periodic force, fsin pt

The sum of above forces is balanced by Newton's force,
editionally

i.e.
$$
ma = -ky - \frac{rdy}{dt} + f \sin pt
$$
 ... (1.24)
\n $\therefore m \frac{d^2y}{dt^2} = -ky - \frac{rdy}{dt} + f \sin pt$
\n $m \frac{d^2y}{dt^2} + \frac{rdy}{dt} + ky = f \sin pt$
\n $\frac{d^2y}{dt^2} + \frac{rdy}{m} + \frac{k}{m}y = \frac{f}{m} \sin pt$
\nTaking $\frac{r}{dt} = 2b, \frac{k}{dt} = \omega^2$ and $\frac{f}{m} = f$
\n $\therefore \frac{d^2y}{dt^2} + 2b \frac{dy}{dt} + \omega^2y = f \sin pt$
\n \therefore (1.25)
\n \therefore (1.26)

The equation is differential equation of motion of particle.
• At a steady state the body oscillates with the frequence

At a steady state the body oscillates with the frequency
of applied force and not with its natural frequency. The solution of equation (1.25) will be of the form, and $\theta = \tan^{-1}\left(\frac{20p}{\omega^2 - p^2}\right) = \tan^{-1}(0) = 0$

$$
= A \sin (pt - \theta) \qquad \qquad \dots (1.26)
$$

where, A and θ are arbitrary constants, Differentiating and force and displacement are in phase. equation (L.26),

$$
\frac{dy}{dt} = Ap \cos(pt - \theta)
$$

and
$$
\frac{d^2y}{dt^2} = -Ap^2 \sin(pt - \theta)
$$

Substituting in equation (1,25)

 $-$ Ap² sin (pt - θ) + 2b Ap cos (pt - θ) + ω^2 A sin (pt - θ) and

$$
= f \sin pt = f \sin [(pt - 6
$$

 $t = f \sin (pt - \theta) \cos \theta + f \cos (pt - \theta) \sin \theta$ $\pi/2$.

comparing coefficients of sin (pt − θ) and cos (pt − θ) on both sides, we get,

\n
$$
A(\omega^{2} - p^{2}) = f \cos \theta \qquad ...(1.27)
$$
\n2b Ap = f sin θ

\n
$$
...(1.28)
$$
\nSquaring and adding equations (1.27) and (1.28),

\n
$$
A^{2} (\omega^{2} - p^{2})^{2} + 4b^{2} A^{2} p^{2} = f^{2} (\cos^{2} \theta + \sin^{2} \theta)
$$
\n
$$
A^{2} [(\omega^{2} - p^{2})^{2} + 4b^{2} p^{2}] = f^{2}
$$
\n
$$
A = \frac{f}{\sqrt{[(\omega^{2} - p^{2})^{2} + 4b^{2} p^{2}]}} \qquad ...(1.29)
$$
\nDividing equation (1.28) by (1.27), we get,

tan θ =
$$
\frac{200 - p^2}{A (ω^2 - p^2)}
$$

\nθ = tan⁻¹ $\left(\frac{2bp}{ω^2 - p^2}\right)$... (1.30)

 $m = \tan \left(\frac{m^2 - p^2}{p^2} \right)$
Equation (1.29) gives the amplitude and equation (1.30) phase of oscllations.

Depending upon the relative values of p and ω we have following cases.

Case I: When driving frequency is low i.e. $p \ll \omega$.

 $\mathcal{L}_{\mathbf{r}}$

In this case, the amplitude of oscillation is given by,

$$
A = \frac{1}{\sqrt{[(\omega^2 - p^2)^2 + 4b^2p^2]}}
$$

= $\frac{f}{\sqrt{\omega^4}} = \frac{f}{\omega^2}$ = constant

 $y = A \sin(pt - \theta)$... (1.26) The amplitude depends on the magnitude of applied force

Case II : When $p = \omega$ i.e. frequency of the force is equal to the frequency of the body. the frequency of the body.

In this case the amplitude of oscillation is given by,

$$
A = \frac{f}{2bp} = \frac{f}{r\omega}
$$

$$
\theta = \tan^{-1}\left(\frac{bp}{0}\right) = \tan^{-1}(\infty) = \pi/2
$$

 $f(\theta) + \theta$] Thus the amplitude of oscillation will depend on the damping force and the amplitude wil be very large. The $A(\omega^2 - p^2)$ sin (pt - 8) + 2b Ap cos (pt - 8)
displacement and the force will have a phase difference of

greater than natural frequency ω of the body.
The amplitude in this case. Sharmness of Pesco

$$
A = \frac{f}{\sqrt{p^2 + 4b^2 p^2}} = \frac{f}{p^2} = \frac{f}{mp^2}
$$

d
$$
\theta = \tan^{-1} \left(\frac{2bp}{\omega^2 - p^2}\right) = \tan^{-1} \left(\frac{2bp}{-p^2}\right)
$$

Thus the amplitude A decreases and the phase difference frequency is called sharpness of the resonance.
tends to π .

 \bullet In case of forced oscillation, a body vibrates with the frequency ot the extemal torce causing the Oscillation rather than its natural frequency. The resultant $\left\lfloor \begin{array}{ccc} 1 & 1 & 1 \end{array} \right\rfloor$ amplitude under forced vibration is given by equation.

$$
A = \frac{1}{\sqrt{(\omega^2 - p^2)^2 + 4b^2 p^2}} \qquad \dots (1.3)
$$

- From above equation it is clear that the resultant amplitude of oscillation varies with the frequency value of force p. For a particular value of p the amplitude becomes maximum. This phenomenon is known as Resonance. **Archives and Science Resonance** Resonance Resonanc
- Thus, phenomenon of making a body oscillate with its **FIG. 1.3: Resonance** natural frequency under the influence of another $\boxed{1}$ **FIG. EXECUTERAL SALALATE FAILL** natural frequency under the influence of another **1.5 DIFFERENTIAL WAVE EQUATION Dec. 17**
oscillating body with the same frequency is called Fig. 2.5 DIFFERENTIAL WAVE EQUATION **Dec. 17**
resonance. For amplitude to be ma

i.e.
$$
\frac{d}{dp} [(ω^2 - p^2)^2 + 4b^2p^2] = 0
$$

2 (ω² - p²) (-2p) + 4b² (2p) = 0
 \therefore ω² - p² = 2b²

or
$$
p = \sqrt{(\omega^2 - 2b^2)}
$$

If the damping is small i.e. b is negligible, then above equation reduces to

$$
p = \omega \qquad \qquad \dots (1.33)
$$

which is the condition for resonance.

Substituting this condition in the equation (1.31) we get,
\n
$$
A_{max} = \frac{f}{\sqrt{(p^2 - p^2)^2 + 4b^2p^2}}
$$
\n
$$
= \frac{f}{2bp}
$$
\n(1.34) Fig. 1.4 : Progressive wave

ENGINEERING PHYSICS (BATU) (1.5) oscillation, Ultrasonics and Dielectric Materials Case III : When p >> ω i.e. the frequency of the force is $\Big|$ Thus A_{max} approaches to infinity when damping force

Sharpness of Resonance:

- The amplitude of forced oscillation is maximum when the frequency of the applied force satisfies the and $\theta = \tan^{-1} \left(\frac{2bp}{\omega^2 - p^2} \right) = \tan^{-1} \left(\frac{2bp}{-p^2} \right)$ condition of resonance i.e. $p = \sqrt{(\omega^2 - 2b^2)}$. If the $t = \tan^{-1}(0) = \pi$
The rate of fall in the amplitude with the change of
forcing frequency on each side of the resonance
- 1.4.2 Resonance
 1.4.2 Resonance Fig. 1.3 shows the variation of amplitude with the forcing frequency at different damping values.

-
- A wave motion is a disturbance which travels through $\sqrt{[(\omega^2 - p^2)^2 + 4b^2 p^2]}$ has to be minimum. available space or medium and the medium particle vibrates around their mean position when the wave approaches. The motion is handed over from one particle to the next after regular interval of time.
	- Consider a progressive wave originating at the origin O and travelling along the positive x - axis with velocity v \ldots (1.32) as shown in Fig. 1.4. $+ a$ $V₁$ Ω

DOWNLOADED FROM BATU-EXAMS.in

As the wave proceeds, each successive particle of the
medium is set into simple harmonic motion. Let the medium is set into simple harmonic motion. Let the measured from the instant when the particle at the origin O is passing through its equilibrium position, and the origin O is passing through its equilibrium position, The displacement y of a particle at O from its mean position at any time t is given by,

$$
y = a \sin \omega t \qquad \dots (1.35)
$$

$$
y = a \sin \frac{2\pi}{T} t \qquad \dots (1.36)
$$

where, $\omega = \frac{2\pi}{T}$

there is a phase lag of (x/v) sec between the particle at \vert Calculate the phase difference between the two particles. points A and O. Therefore, the displacement of the Solution: The given equation is
particle at A at a time t will be same as that of particle $y = 8 \sin \pi (0.02 \times -4.00 \text{ t})$ particle at A at a time t will be same as that of particle at O at a time (x/v) sec earlier i.e. at time (t-x/v). Thus This equation can be put in the following way:
equation (1.36) becomes.

$$
= a \sin \frac{2\pi}{T} \left(t - \frac{x}{v} \right) \qquad \qquad \dots (1.37)
$$

The other forms of the equation are,
\n
$$
y = a \sin \frac{2\pi}{Tv} (vt - x)
$$
\n
$$
\therefore \qquad y = a \sin \frac{2\pi}{\lambda} (vt - x) \qquad \dots (1.38)
$$
\n
$$
(\because Tv = v/f = f\lambda/f = \lambda)
$$

$$
y = a \sin 2\pi \left(\frac{t}{T} - \frac{x}{\sqrt{1}}\right)
$$

$$
\therefore \qquad y = a \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)
$$
 ... (1.39)
 If the distance between two points be Δx , then
 difference between the two points is given by

$$
\Delta \phi = \frac{2\pi}{\lambda} \times \Delta x = \frac{2\pi}{100} \times 20.0 = \frac{2\pi}{5} \text{ radi}
$$

For differential equation of a wave, differentiate equation (1.38) w. r. t x (1.38)

$$
\frac{dy}{dx} = a \left(\frac{2\pi}{\lambda}\right) \cos \frac{2\pi}{\lambda} (vt - x)
$$
\nor,
\n
$$
\frac{d^2y}{dx^2} = -a \left(\frac{2\pi}{\lambda}\right)^2 \sin \frac{2\pi}{\lambda} (vt - x) \qquad ...
$$

$$
\frac{dy}{dt} = a\left(\frac{2\pi}{\lambda}\right) v \cos \frac{2\pi}{\lambda} (vt - x)
$$

ENGINEERING PHYSICS (8ATU) (L5) 0SCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

\n proceeds, each successive particle of the
\n set into simple harmonic motion. Let the
\n stored from the instant when the particle at
\n is passing through its equilibrium position.\n

\n\n The equation is given by:\n
$$
\frac{d^2y}{dt^2} = -a \left(\frac{2\pi}{\lambda} \right)^2 v^2 \sin \frac{2\pi}{\lambda} \quad (vt - x) \quad \dots (1.41)
$$
\n

\n\n The equation is given by:\n $\frac{d^2y}{dx^2} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

\n\n The equation is given by:\n $\frac{dy}{dx} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ \n

6) This is the differential wave equations.

Problem 1.1 : Equation of wave moving on a string is $y = 8$ Now consider a particle at point A at a distance x from $\sin \pi (0.02 \times -4.00 \text{ t})$. Here y and x are in cms and t in secs. O, the wave starting from O would reach the point in Find amplitude, frequency and velocity of the wave. Two (x/v) seconds later than the particle at O. Therefore. particles at any instant are situated at 200 cms apart.

 $y = 8 \sin 2\pi (0.01 x - 2.00 t)$... (1) $y = a \sin \frac{2\pi}{T} \left(t - \frac{x}{y} \right)$ (1.37) comparing this equation with standard equation
ents the equation of a plane progressive $y = -a \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T} \right)$ This represents the equation of a plane progressive $y = -a \sin 2\pi \left(\frac{x}{\lambda} - \frac{1}{T}\right)$... (2) wave. \blacksquare Amplitude a = 8 cm, periodic time $T = \frac{1}{2.00} = 0.50$ sec. Frequency n = $\frac{1}{T}$ = 2.0 sec⁻¹, wavelength $\lambda = \frac{1}{0.01} = 100$ cm
Now wave speed

difference between the two points is given by

$$
\Phi = \frac{2}{\lambda} \times \Delta x = \frac{100}{100} \times 20.0 = \frac{2}{5} \text{ radian}
$$

$$
= \frac{2}{5} \times 180 = \frac{72^9}{100} \quad [\because \pi \text{ radian} = 180^9]
$$

Problem 1.2 : A simple progressive wave is represented by the equation $y = 0.5 \sin (314 t - 12.56 x)$: where y and x are expressed in meters and t in secs. Find (a) amplitude, (1.40) (b) wavelength, (c) speed of the wave, (d) frequency, and (e) phase difference for the points 7.5 metres apart. Again differentiating equation (1.38) w.r.t t, we get Solution: Here y = 0.5 sin (314 t - 12.56 x) The equation can be put in the following form $y = 0.5 \sin 12.56 \left(\frac{314}{12.56} t - x \right)$

SOLVED PROBLEMS

Also, $y = a \sin 2\pi \left(\frac{1}{2} - \frac{x}{x}\right)$ if the distance between two points be Ax, then phase

Comparing this equation with the standard equation $1.$

$$
y = a \sin \frac{2\pi}{\lambda} (v t - x)
$$

(a) amplitude a = 0.5 meters

(b)
$$
\frac{2\pi}{\lambda}
$$
 = 12.56 i.e., $\lambda = \frac{2\pi}{12.56}$ = 0.5 meters
(c) velocity $v = \frac{314}{12.56}$ = 25 meters/sec.
(d) frequency $n = \frac{v}{\lambda} = \frac{25}{0.5}$ = 50 per sec.

Problem 1.3:A train of simple harmonic wave traveling in a gas along the positive direction of X oxis with an amplitude
2 cm velocity 45 metres per sec. and frequency 75. Calculate the displacement, particle velocity and acceleration at a distonce of 135 cm from the origin after an interval of 3 sec

Solution: The displacement of a particle y in a plane progressive wave is given by freely even in the dark.

$$
y = a \sin \frac{2\pi}{\lambda} (v t - x
$$

Here $a = 2$ cm, $v = 4500$ cm/sec, $n = 75$,

x = 135 cm, t = 3 sec
\nλ =
$$
\frac{V}{R} \times \frac{4500}{75}
$$
 = 60 cm

and

$$
y = 2 \sin \frac{2\pi}{60} (4500 \times 3 - 135)
$$

= 2 \sin \frac{891\pi}{2} = 2 \sin \left(445\pi + \frac{\pi}{2} \right)

$$
= -2 \sin \pi/2 = -2 \text{ cm}
$$

$$
\frac{dy}{dt} = \frac{2 \pi a v}{\lambda} \cos \frac{2 \pi}{\lambda} (v t - x)
$$

As above
$$
\sin \frac{2\pi}{\lambda}
$$
 (v t - x) = -1
\n $\therefore \cos \frac{2\pi}{\lambda}$ (v t - x) = 0
\n**EXECUTE:**

Hence,
$$
\frac{dy}{dt} = 0.0
$$
 cm/sec.
1.7.1 Piezo-Electric Effect [Dec 18 May 19]

$$
\frac{d^2y}{dt^2} = -\frac{4\pi^2 v^2}{\lambda^2} a \sin \frac{2\pi}{\lambda} (v t - x)
$$

= $-\frac{4\pi^2 v^2}{\lambda^2} y = -\frac{4\pi^2 (4500)^2}{(60)^2} \times (-2)$
= $\frac{4.437 \times 10^5 \text{ cm/sec}^2}{}$

ENGINEERING PHYSICS (BATU) (1.7 05CLLATION, ULTRASONICS AND DIELECTRIC MATERIALS

- We all know that sound is due to the Vibrations of Particles of the Medium. Human ear can hear the sound waves of frequencies between 20 Hz to 20,000 Hz This range of frequencies is known as the Audible Range.
- The sound waves whose frequencies are greater than 20,000 Hz are known as Ultrasonic Waves. The wavelength of utrasonic waves is very smal as compared to that of audible sound. The sound waves which have frequencies less than the audible range are called as Infrasonic Waves
- The utrasonic and infrasonic frequencies are inaudible to human beings but they are audible to some birds, dogs and insects. A dog can hear sound of frequencies above 20 kHz. Bats can hear sound waves of
frequencies upto 100 kHz. This enables them to move
- As the utrasonic waves have very high frequency they undergo very less diffraction and therefore less spreading. Because of this property, high energy can be concentrated in a very narrow beam and can cover very large distances with very less losses of energy. This

special feature makes them useful in many applications.
 1.7 PRODUCTION OF ULTRASONIC WAVES

• Ultrasonic waves cannot be produced by the ordinary

- method i.e. by using mechanical vibrations. This is because of the comparatively low natural frequencies
of the moving parts. Hence other methods are used for the production of uitrasonic waves. Ihe method chosen depends upon the output power required and the The particle velocity **frequency** range needed.
	- A device which produces utrasonic waves is called an Utrasonic Transducer. To generate lower frequencies, a mechanical type device such as Galton's Whistle is used. Magnetostriction method is used when frequencies upto 300 kHz are needed, while piezoelectric generators are used mostly for frequencies

When opposite faces of a thin section of certain Particle acceleration, and the Particle acceleration, a particle acceleration, a particle acceleration, distortion by applying Pressure or Tension, then Equal and Opposite Charges are developed on the faces perpendicular to the faces subjected to distortion. The magnitude of the potential difference developed is proportional to the amount of distortion produced.

The polarity of the charges gets reversed when the direction of the force of distortion is reversed. This phenomenon is known as Piezo-Electric Effect

Fig. 1L5: Plezo-electric effect

- The converse of piezo-electric effect is also true i.e. if a $f = \frac{P}{2l} \sqrt{\frac{E}{\rho}}$
potential difference is applied across the two faces of where $P = 1, 2, 3, \dots$ etc potential difference is applied across the two faces of where $P = 1, 2, 3, \dots$ etc. for **Fundamental, First**
the crystal, it expands or contracts depending on the **Overtone** and **Second Overtone** respectively. E is the
- applied across the faces of the crystal, then the crystal Piezo-Electric Oscillator will expand and contract alternatively. This alternate
- If the frequency of the applied a.c. voltage happens to be equal to one of the modes of vibration of the gystal, rexonance occurs and the crystal vibrates with maximum amplitude.

Fig. L6:(n) Natural quartz crystal and (b) Trensverse section of quartz crystal cut along a plene ϵ quartz crystal cut along a plane ρ respectively. The perpendicular to the optic axis

Fig. 1.6 (a) shows a natural quartz crystal and Fig. 1.6 (b) shows a transverse section of the crystal.

- Consider a quartz aystal plate of thickness t and Lensider a quartz crystal plate of thickness t and Fig. 1.7: Piezo-electric oscillators in the optic axis). When an alternating Fig. 1.7: Piezo-electric oscillators and the prior of the prior of the prior of the prior of t voltage is applied across the faces of this crystal along | Alternative Method for Plezo-electric Oscillator the electrical axis, then alternating stress and strain is set up both in its thickness and length.
- If the frequency of the alternating voltage coincides with the natural frequency of vibration of the crystal, resonance Occurs. The crystal vibrates with large amplitude. On maintaining suitable alternating

ENGINEERING PHYSICS_{(BAT}U) 0SCRIPTION, ULTRASONICS AND DIELECTRIC MATERIALS

potential, ultrasonic waves can be generated by this method.

The frequency of the thickness vibrations

$$
f = \frac{p}{2t} \sqrt{\frac{E}{\rho}}
$$

• The frequency of the length vibrations,

Overtone and Second Overtone respectively, E is the

strength and direction of the applied field. Young's modulus, p is the density of the crystal, t is the . Instead of steady voltage if an alternating voltage is thickness and I is the length of the crystal. Dec. 18

The experimental set up is as shown in Fig. 17.

- expansion and contraction will make the crystal vibrate.
The high frequency of the applied a.c. voltage happens to crystal is obtained from an oscillatory circuit
	- (inductance L₁ and a variable condenser C_1 in parallel).
One end of the oscillatory circuit is connected to the plate of the valve and the other end to the grid. The quartz crystal is placed in between two metal plates A
and B to form a parallel-plate capacitor with the crystal as a dielectric. This is connected in parallel to the variable condenser C₁.
	- By adjusting the variable condenser, the frequency of the oscillatory circuit is tuned to the natural frequency of the crystal.
	- At this stage, the crystal is set into mechanical vibrations and utrasonic waves are generated. By this method, ultrasonic waves upto a frequency of 15×10^7 Hz can be obtained.

Construction

The piezo-electric oscillator uses basically a Hartey ۰ oscillator. The transistor is biased using the resistors R_1 , R_2 and R_3 . The combination of L_i, L_z and C_i works as tuning circuit which is couple with the transistor with a coupling capacitor C_2 . The capacitor C_2 is used to provide positive feedback.

Fig. 1.8: Plezo-electric oscillator

- When the circuit is switched on, oscillating currents are

produced in the tuning circuit,

The oscillating currents generated by the tuning circuit
 $\frac{1}{2}$ is its density of rod.
- The oscillating currents generated by the tuning circuit are sustained and the electric signal obtained at the output is applied to the piezoelectric crystal through coupling capacitor C4.
- When these high frequency electrical signals are Fig. 1.9: Magnetostriction effect applied to the crystal, because of reverse piezoelectric effect, the crystal undergoes alternate contraction and **Magnetostriction Oscillator**
expansion. These vibrations produce ultrasonic waves. **Contraction and a set of the substant** expansion. These vibrations produce ultras
- The frequency of ultrasonic waves can be changed by varying the values of components of the tuning circuit

resonance occurs and crystal oscillates with maximum amplitude and amplitude of ultrasonic waves will be $\|\cdot\|$ The exciting coil L₁ is connected to the plate circuit of a

- Ultrasonic waves upto frequency of 1.5×10^8 Hz can be grid circuit.
produced using piezoelectric oscillator.
-
- undergoes a **Change in its Length** when placed in a the rod expands and comparation is set up in the rod. magnetic field parallel to its length.

ENGINEERING PHYSICS (BATU) (1.9) osCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

- $\frac{1}{2\pi\sqrt{L\overline{C}_1}}$, where L_r = L₁ + L₂ the rod expands and contracts in length alternately. frequency is twice the frequency of the alternating magnetic field. If the natural frequency of the rod and the frequency of the alternating field is the same, resonance occurs and the amplitude of vibration of the rod is maximum.
	- The range of trequency depends on the dimensions of the magneto strictive material. The longitudinal vibrations thus produced are exactly ike those produced by a rod which is clamped at the mid point but has both ends free.
	- The frequency of vibration of such a rod is

- Working where E is the Young's modulus,
	-

- expansion. These vibrations produce ultrasonic waves.
The frequency of ultrasonic waves can be changed by and the principle of magnetostriction.
- varying the values of components of the tuning circuit \overline{F} Fig. 1.10 shows the experimental set up of magneto-
as per the relation $f = \frac{1}{2\pi\sqrt{L_1C_1}}$. When frequency of striction oscillator. It consists of a perm magnetised nickel or iron rod (magnetised ihitaly by oscillation of the tuning circuit becomes equal to the passing direct current in the coil which is wound
natural frequency of the crystal $f = \frac{P}{n} \sqrt{\frac{E}{n}}$ around it). The rod is clamped at the centre. The two natural frequency of the crystal f = $\frac{p}{2l}\sqrt{\frac{E}{r}}$. around it). The rod is clamped at the coils L₁ and L₂ are wound over the rod.
- maximum. \blacksquare valve while the coil L_2 is coupled to the plate via the
- produced using piezoelectric oscillator.
1.7.2 Magnetostriction Effect [Dec. 17, May 18] oscillation currents are set up in the plate circuit. This **1.2 Magnetostriction Effect** $[Dec. 17, May 18]$ oscillation currents are set up in the plate circuit. This According to this phenomenon, a rod of high frequency current flowing through the coil L_1 hericoloning to this phenomenon, a rod of produces changes in the length of the rod. Due to this, Ferromagnetic Material such as iron or nickel produces changes in the length of the rod. Promagnetic Material Such as ron or

Fig. 1.10: Magnetostriction oscillato

- These vibrations in the length of the rod cause a variation in the magnetic flux through the coil L_2 and $\left\| \cdot \right\|$ The coil produces magnetic field which is alternately an e.m.f. is induced in it. This induced e.m.f. is fed to the grid which produces large variations in the plate current. Thus magneto strictive effect in the bar is increased.
- the natural frequency of the rod, resonance occurs and ultrasonic waves of maximum amplitude are produced. By adjusting the length of the rod and condenser capacity. high frequency oscillations of different frequencies can be obtained.

of resistances R_1 , R_2 and R_4 . The inductance L and capacitors C₁ and C₂ form a tank circuit and C₃ is a $\left\{\n\begin{array}{ccc}\n\cdot & \text{In} & \text{solids}, & \text{ultrasonic} & \text{waves} \\
\text{feedback} & \text{conjecture}, & \text{The} & \text{transverse} & \text{waves}\n\end{array}\n\right\}$ feedback capacitor. The tank circuit is used for longitudinally and transversely. I
selecting resonance frequency. selecting resonance frequency.

circuit are ampified and the oscillations corresponding to them are sustained. The resonance of tank circuit is

given by
$$
f_i = \frac{1}{2\pi\sqrt{LC_i}}
$$
, where $C_i = \frac{C_1C_2}{C_1 + C_2}$.

shape of solenoid at the output of the oscillator.

Working

- When the circuit is switched on oscillating currents are produced in the tuning drcuit The oscilations appearing at output terminal of oscillator circuit are fed to the magnetostriction coil through the coupling capacitor C4. The magnetostriction coil is placed surrounding the ferromagnetic rod.
- changing in opposite directions &nd is applied around the ferromagnetic rod. Due to magnetostriction effect, the changing magnetic field causes rod to contract and expand atemately. These vibrations of the rod travel in When the frequency of the circuit becomes equal to surrounding medium in the form of ultrasonic waves.
	- The frequency of oscillating current in the tank circuit can be changed by varying the values of the components of the tank circuit.
	- The frequency of vibrations of the rod is given by $f = \frac{p}{2l} \sqrt{\frac{E}{p}}$.

- where, p is integer, I is length of the rod, Y is Young's modulus and p is density of the rod.
- When frequency of the tuning circuit becomes equal to natural frequency of the rod, the rod vibrates with maximum amplitude and ultrasonic waves with maximum amplitude are obtained.

1.8 PROPERTIES OF ULTRASONIC WAVES

- As the wavelength of the waves is very small, ultrasonic waves suffer least diffraction. They can be Transmitted Over Longer Distances as a highly directional beam without appreciable loss of energy.
- Ultrasonic waves are Highly Energetic and may have **Fig. 1.11** \bullet Ultrasonic waves are **High**
intensities upto 10 kW/m².
- Construction

The magneto strictive oscillator uses basically a

Colpit's oscillator. The transistor is biased with the help

Colpit's oscillator. The transistor is biased with the help

Colpit's oscillator. The transistor
	-

ENGINEERING PHYSICS (BATU) (1.11) oSCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

- Temperature of the Medium through which it is
- When ultrasonic waves are passed through a liquid kept in a rectangular vessel, they are reflected from the kept in a rectangular vessel, they are reflected from the

bottom of the vessel. The directed and reflected rays

get superimposed resulting in a stationary wave. Due

vt get superimposed resulting in a stationary wave. Due $d = \frac{vt}{2}$ the node is greater than that at the antinode. Now, if a parallel beam of light is passed at right angle to the wave the liquid acts as a diffraction grating. This is called as Acoustical Grating.

1.9 APPLICATIONS OF ULTRASONIC WAVES
1.9.1 Scientific Applications

- Echo Sounding: Ultrasonic sound waves are used for **Rule Applications Council** Pulse of sound signaling. depth sounding, determining the position of ice bergs, submarines etc. These applications make use of the echo principle. The high | . Determining the Position of Icebergs, Submarines, frequency 5ound waves can be readily formed into a narrow beam and can be focused in any desired direction. Because of this, these waves can travel many kilometres in water before being absorbed. Ultrasonic waves of 50 kHz frequency are generated by a crystal
vibrator. The moment signal is sent from the returns, it is indicated by a deflection of the spot on the CRO. The time interval between the two deflections can be measured. Knowing the velocity ot the uitrasonic waves and the time interval, the position of the receiver $\|\bullet\|$ Cleaning and Removing Dirt: Clothes or utensils that or obstacle can be determined. This is the underlying principle in echo sounding.
- the depth of water below a ship can be calculated \vert treatment using ultrasonic waves. Because of their high frequency chimney. using ultrasonic waves. Because of their high frequency
and short wavelengths, ultrasonic waves are not and short wavelengths, ultrasonic waves are not $\frac{1.9.2}{2}$ Engineering Applications absorbed by water so strongly as lower frequency $\frac{1}{2}$ Non-Destructive Testing waves. Waves of frequency of about 40 kHz are used. They are produced by a crystal transducer and are \rightarrow Non-destructive testing is characterized by low directed towards the bottom of the sea, at regular intensity of the sound wave used. Here sound wave directed towards the bottom of the sea, at regular vibrate. The vibrations generate a small e.m.f. across its material. faces which is recorded on a sensitive CRO. The time $\vert \hspace{1cm} \vert$ Such applications are found in testing, inspection interval between the emission of initial wave pulse and and quality control.

Velocity of ultrasonic waves depends on the the e.m.f. generated due to the reflected waves is
Temperature of the Medium through which it is recorded. If v is the velocity of ultrasonic waves in sea propagating propagating water and t is the time interval between sending and

water and t is the time interval between sending and

receiving of the wave, then

- a Shoal of Fish in Sea, etc.: The principle employed here is the echo principle. Ultrasonic waves are reflected from objects even if they are very smal Hence the presence of submerged objects in the sea like icebergs. submarines etc. can be detected. Pulses of ultrasonic signals are sent out at short intervals. The transmitter, a deflection of the spot on the C.R.O. reflected echo is received in the ultrasonic receiver and screen is observed. The beam travels to the receiver or the time interval between the transmitted and received obstacle and reflects back. When the reflected beam signals is noted. This is the two way travel time from
returns, it is indicated by a deflection of the spot on the the source to the target. Knowing the velocity of sound in water, the distance between the source and the target can be calculated.
- have to be cleaned are subjected to ultrasonic waves. These waves will put the dirt particles or water particles Depth Sounding: This application of ultrasonic waves into vibration. As a result, these particles loosen their
makes use of the Echo Principle. The depth of sea or attachment with the surface and fall-off. The same makes use of the Echo Principle. The depth of sea or attachment with the surface and fall-off. The same the depth of water below a ship can be calculated treatment is used for removing soot and dust from the

-
- intervals. The reflected waves from the bottom of the \vert is not expected to cause any change in the sea are received by the same crystal causing it to chemical or physical characteristics of the specimen
	-

- the specimen under inspection. When the ultrasonic waves are incident on the defect reflection of the wave from the interface (between materal and defect) in the object takes place. Thus, the defects are located without any real damage to the specimen.
- \triangleright Ultrasonic waves may be used for a large number of non-destructive testing on different materials. Some of these are
	-
	- (ii) Ultrasonic study of structure of matter. **Cavitation**

Flaw Detection

- \triangleright The strength of components plays a significant role in most of the engineering applications. Any kind of defect greaty reduces the strength of materials. These defects can be as large as cracks or as tiny as
- impressed on a quartz crystal which is placed on the specimen under test. The crystal (transducer) \Rightarrow The life time of the bubble is very short, and it first acts as a transmitter sending out high frequency waves into the specimen.
- \triangleright Then it acts as a receiver to receive the ultrasonic echo pulses reflected from the flaw and from the \cdot for atmospheres.
 \cdot The formation and implosion of bubbles accounts corresponding electric echo pulses of the same frequency. These are then amplified and displayed
- wave, the next pulse corresponds to the reflected \Rightarrow Even though cavitation bubbles formed by reflected pulse is indicated at a particular time after applications like utility of the utrasonic cleaning. U
the lighted approximate under the utrasonic contrast of emulsification etc. the initial transmitted pulse. The time interval and the initial transmitted pulse of the transmitted and reflected pulse between the transmitted and reflected pulse represents the distance travelled by the wave. From \rightarrow Ultrasonic cleaning is achieved through a
this the exact position of the flaw is located.

- When an ultrasonic transducer is placed in a liquid, it produces ultrasonic vibrations in it. This results in ۷ the development and implosion of bubbles. These bubbles are known as the cavitation bubbles and they are formed as follows.
- When a liquid is subjected to a powerful ultrasonic cavities. radiston, tension deveiops at some point in a liquid. The excess stress tears apart the liquid \triangleright A high frequency pulse from pulse generator is producing a hollow bubble that sucks in dissolved impressed on a quartz crystal which is placed on quases and vapours.
	- olapses very quicky. During the implosion of the bubble, the pressure of the shock wave that is
- The formation and implosion of bubbles accounts far end of the specimen. The received ultrasonic for erosion and pitting of an ultrasonic transducer For erosion and pitting or an ultrasonic transducer
kept in the liquid. The bubbles have two effects : (i) they produce a dense cloud in front of the transducer and block the propagation of ultrasonic on the CRO. screen as a series of pulses. waves, (ii) frequent implosion of bubbles destroys \triangleright The first pulse corresponds to the transmitted the surface of the transducer causing pits.
	- wave. i.e. first one from the flaw and the second | ultrasonic vibrators in liquids block the wave one from the far end of the specimen. Each propagation, it has some successful industrial
reflected oulse is indicated at a particular time after applications like ultrasonic cleaning, ultrasonic

combined effect of cavitation and acceleration of

ENGINEERING PHYSICS (BATU) (1.13) OSCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS
the cleaning liquid. Ultrasonic waves in liquid $T = \frac{vt}{2}$ produce cavitation i.e. tiny space in the liquid. The vacuum created in these spaces exerts a strong pull where, v is the velocity of the ultrasound in the on exposed solid surfaces. This detaches any particles of dust attached to them.

- The transducer is placed at the bottom of the tank in which the cleaning solution (either a water detergent solution or standard solvents) is taken.
- \triangleright For the cleaning of metallic parts, low frequency waves are used while for cleaning fibres, high frequency waves are used. The specimen to be cleaned is kept immersed in the cleaning solution

Ultrasonic Emulsification

- \triangleright In has been observed that intense ultrasonic waves fig. 1.14
 \triangleright If the velocity of ultrasonic waves in the material is
 \cdot is the velocity of ultrasonic waves in the material is liquid and vibrator, and also between liquid and material can be calculated.
walls of the container.
- vibrations by a transducer. Then emulsification due **the need for drilling**
damage to the piece to gas bubbles takes place at the surface of the damage to the piece.

container containing the two liquids.
 1.9.3 Medical Applications container containing the two liquids.

Measurement Gauge

- to the test piece directly or it can be coupled to the piece by an incompressible medium such as oil or $\left| \begin{array}{c} \bullet \\ \bullet \end{array} \right|$ They make the cutting almost painless. water. We have a structure of the material very easily, and
- They travel through the sample and are reflected transducer then receives the reflected echo and converts it to an electrical pulse. The time taken for **Problem 1.4** : Calculate the natural frequency of the thickness T can be expressed by the formula,

velocity of sound in specimen x time **Data:** $t = 5.5 \times 10^{-3}$ m, $E = 8 \times 10^{10}$ N/m², p = 2.65 x 10

Data: $t = 5.5 \times 10^{-3}$ m, $E = 8 \times 10^{10}$ N/m², p = 2.65 x 10

Thickness = $\frac{2}{2}$ kg/m

- can thoroughly mix immiscible liquids like oil and \geq If the velocity of ultrasonic waves in the material is water to form a stable emulsion. The emulsification not known, then the value has to be determined water to form a stable emulsion. The emulsification

results because of the cavitation bubbles results because the cavitation bubbles

imploding at the boundary surfaces between a thickness is already known. From the known values imploding at the boundary surfaces between a of T and t , the velocity v of ultrasound in the
- The two liquids which are to be emulsified are \overrightarrow{p} The advantage of using ultrasonic waves for taken in a container. This container is placed in a thickness measurement is that the thickness can be taken in a contain measured trom one side of the rest plece. Interest include the side of the rest plece. Interest plece. Interest
The rest please is a subjected to strong ultrasonic and the rest for drilling holes or otherwise inflicting

Certain tumors which cannot be detected by X-rays can be Ultrasonic thickness measurement is based on the detected by ultrasonic waves. Joints affected by rheumatic Echo Principle. A piezoelectric transducer attached
to the test piece converts the electric pulse into
ultrasonic waves. The transducer can be attached eutting of the tissue during an operation. Ultrasonic waves to the test piece converts the electric pulse line attached during of the tissue during an operation. Ultrasonic waves
are very useful for dental cutting because

-
-
- Ine ultrasonic waves propagate into the test piece. They do not require any mechanical device for cutting They travel through the sample and are reflected purpose. Thus, ultrasonography now has become an important tool which help physicians in diagnosing and
back from the opposite surface. The same treating medical ailments.

the pulse to travel through the sample is related to thickness vibrations for quartz plate of thickness 5.5 \times 10⁻³
the thickness and the velocity in the material. The m given that Young's modulus along X-axis is 8

Formula: The fundamental frequency of thickness
vibrations is given by
\n
$$
n = \frac{1}{2t} \sqrt{\frac{E}{p}}
$$
\n**Solution:**
\n
$$
n = \frac{1}{2 \times 5.5 \times 10^{-3}} \sqrt{\frac{8 \times 10^{10}}{2.65 \times 10^{3}}}
$$
\n
$$
n = \frac{1}{2 \times 5.5 \times 10^{-3}} \times 5.5 \times 10^{3}
$$
\n
$$
= 500 \times 10^{3} Hz
$$
\n
$$
= \frac{1}{200 \times 10^{3} Hz}
$$
\n**Problem 1.8 : An *utrosonic source*
\n*putse towards the sea bed which velocity of sound in sea water is 14
\n*not also the second side of the sea?*
\n**Problem 1.8 : An *utrosonic source*
\n*putse towards the sea bed which velocity of sound in sea water is 14
\n*not also the second side of the year*******

Problem 1.5 : Calculate the frequency of the fundamental (b) What is the wavelength of the pulse in water ? note emitted by a piezoelectric crystal, using the following data. Vibrating length = 3 mm, Young's modulus = 8×10^{10} $N/m²$ and density of crystal = 2.5 g/cm³.

Data: $l = 3$ mm, $E = 8 \times 10^{10}$ N/m², $\rho = 2.5$ g/cm³. Formula: The fundamental frequency of length vibration is given by

$$
n = \frac{1}{2i} \sqrt{\frac{E}{p}}
$$

\nSolution:
\n
$$
n = \frac{1}{2 \times 3 \times 10^{-3}} \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= 0.943 \times 10^{6} Hz
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}} = \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}} = \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n
$$
= \sqrt{\frac{8 \times 10^{10}}{25 \times 10^{3}}}
$$

\n<math display="block</math>

Problem 1.6: An uttrasonic source of 0.07 MHz sends down Young's modulus= 8 x 10 N/m²
a pulse towards the seabed which returns after 0.65 sec. The **pulse to pulse the section of the second in seabed which returns in 1** velocity of sound in sea water is 1700 m/s. Calculate the depth of sea and the wavelength of the pulse. Data: $f = 0.07$ MHz, $t = 0.65$ sec, $v = 1700$ m/s

Formulae: (i) Depth of sea = $\frac{\text{Velocity of sound in sea} \times \text{Time}}{2}$ **Formula:** The natural frequency

$$
= \frac{vt}{2}, \text{(ii)} \lambda = \frac{v}{g}
$$
\nSolution:

\n
$$
\text{(i)} \ v = \frac{1700 \times 0.65}{2} = \boxed{5!}
$$

(ii) Wavelength of the pulse,

$$
\lambda = \frac{v}{f} = \frac{1700}{0.07 \times 10^6 \text{ Hz}} = \boxed{2.4 \text{ cm}}
$$

length of a pure iron rod; given that density of pure iron is \mid iron rod of 2.6 cm length. 7.25 x 10³ kg/m³ and its Young's modulus is $\frac{115 \times 10^2}{\text{[Dec. 17]}}$ **Given:** Density of rod = 7.23 x10³ kg/m³
N/m².

EXAMPLE: The fundamental frequency of thickness	total	total
Formula: $t = 40$ mm, $p = 7.25 \times 10^3 \text{ kg/m}^3$.		
subrations is given by	$n = \frac{1}{2t} \sqrt{\frac{E}{p}}$	Formula: $t = \frac{1}{2t} \sqrt{\frac{Y}{p}}$
Solution: $n = \frac{1}{2 \times 5.5 \times 10^{-3}} \sqrt{\frac{8 \times 10^{10}}{2.65 \times 10^3}}$	Solution: $t = \frac{1}{2 \times 40 \times 10^{-3}} \sqrt{\frac{115 \times 10^3}{7.25 \times 10^3}}$	
$n = \frac{1}{2 \times 5.5 \times 10^{-3}} \times 5.5 \times 10^3$	Problem 1.8 : An <i>utrasonic source of 70 kHz</i> sends down a puted by the <i>t</i> words the sea wide which returns after 0.5 sec. The velocity of sound in sea water is 1400 cm/sec.	
$n = 500 \times 10^3 \text{ Hz}$	Problem 1.8 : An <i>utrasonic source of 70 kHz</i> sends down a puted by the <i>t</i> th is the <i>data</i> th of the sea?	

velocity of sound in sea water is 1400 cm/sec.

(a) What is the depth of the sea ?

Data: $f = 70$ kHz = 70×10^3 Hz; $t = 0.5$ sec, $v = 1400$

prmulae: (i)
$$
\lambda = \frac{v}{q}
$$

(ii) Depth of sea
$$
= \frac{\text{Velocity of water} \times \text{Time}}{2} = \frac{\text{vt}}{2}
$$

Solution: (i)
$$
D = \frac{1400 \times 0.5}{2} = \boxed{350 \text{ m}}
$$

i) Wavelength,
$$
\lambda = \frac{v}{f} = \frac{1400}{70 \times 10^3} = \boxed{20 \times 10^{-3} \text{ m}}
$$

Problem 1.9 : Calculate the thickness of a quartz plate required to produce ultrasonic waves of frequency 2 MHz.

 $\frac{945 \text{ N·m}}{1.6: An ultrasonic source of 0.07 MHz sends down.}$ Given: Density of crystal = 2650 kg/m³

$$
F = 2 MHz
$$

\n
$$
p = 2650 kg/m3
$$

\n
$$
E = 8 \times 10^{10} N/m2
$$

\nThe natural frequency,

$$
n = \frac{p}{2}, \sqrt{\frac{p}{p}}
$$

\n
$$
= \frac{1700 \times 0.65}{2} = \frac{552.5 \text{ m}}{2}
$$

\n
$$
= \frac{1700 \times 0.65}{2} = \frac{552.5 \text{ m}}{24 \text{ cm}}
$$

\n
$$
= \frac{1}{24} \sqrt{\frac{p}{p}}
$$

\n
$$
= 1
$$

\n
$$
t = \frac{1}{2 \times 2 \times 10^6} \sqrt{\frac{8 \times 10^{10}}{2650}}
$$

\n
$$
= 1.37 \times 10^{-3} \text{ m}
$$

Problem 1.7: Calcuiate the natural frequency of 40 mm Problem 1.10: Calcutate the naturat frequency of a cast

Young's modulus= 1.16×10^{11} N/m³

Data: $l = 2.6$ cm $p = 7.23 \times 10^{3}$ kg/m³ E = 1.16×10^{11} N/m²

Formula:

Formula: $n = \frac{1}{2l} \sqrt{\frac{E}{\rho}}$

Solution: $n = \frac{1}{2 \times 2.6 \times 10^{-2}} \sqrt{\frac{1.16 \times 10^{11}}{7.23 \times 10^{3}}}$

$$
n = 770.29 \times 10^2 \text{ Hz} = 77.03 \text{ kHz}
$$

Problem 1.11: A quartz crystal of thickness 0.001 metre is
vibrating at resonance. Calculate the fundamental frequency
given that Y for quartz is 7.9 x 10¹⁰ N/m² and p for quartz is
2650 kg/m³.
Data: t = 0.001 m 2650 kg/m². **Data:**t = 0.001 m, λ = 7.9 x 10¹⁰ N/m², p = 2650 kg/m

Data:
$$
t = 0.001
$$
 m, $\lambda = 7.9 \times 10^{10}$ N/m², $\rho = 2650$ kg/m³ **Solution:** $f = \frac{1}{2t} \sqrt{\frac{\lambda}{\rho}}$

Solution:

2t
$$
\sqrt{\rho}
$$

= $\frac{1}{2 \times 0.001}$ $\sqrt{\frac{7.9 \times 10^{10}}{2650}}$ = 2729.9 kHz
= $\sqrt{2730 \text{ kHz}}$

Problem 1.12 : Colculate the thickness of a quartz plate required to produce ultrasonic waves of frequency 2 MHz. \qquad \bullet A Dielectric is an insulating material in which all the

Given : Density of crystal = 2650 kg/m³

Young's modulus = 8×10 N/m²

 $= 2650 \text{ kg/m}^3$

 $F = 2 MHz$

$$
E = 8 \times 10^{10} \text{ N/m}^2
$$

Formula : The natural frequency.

$$
r = \frac{P}{2t} \sqrt{\frac{E}{\rho}}
$$

Solution : Take $P = 1$

$$
t = \frac{1}{2 \times 2 \times 10^5} \sqrt{\frac{8 \times 10^{10}}{2650}}
$$

=
$$
\frac{1.37 \times 10^{-3} \text{ m}}{1.37 \times 10^{-3} \text{ m}}
$$

t =
$$
\frac{1.37 \times 10^{-3} \text{ m}}{1.37 \times 10^{-3} \text{ m}}
$$

Density of rod = 7.23×10^3 kg/m³ Young's modulus = 1.16×10^{11} N/m³
Data : $l = 26$ cm $l = 2.6$ cm $p = 7.23 \times 10^{3}$ kg/m³

 $E = 1.16 \times 10^{11} \text{ N/m}^2$

ENGINEERING PHYSICS (BATU) (1.15) OSCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

 $n = 770.29 \times 10^2$ Hz = $\boxed{77.03 \text{ kHz}}$ Problem 1.14 : A quortz crystal of thickness 0.001 metre is

Data: t = 0.001 m, λ = 7.9 × 10¹⁰ N/m², ρ = 2650 kg/m
Solution: f =
$$
\frac{1}{2}
$$
 $\sqrt{\frac{\lambda}{2}}$

$$
= 2t \sqrt{\rho}
$$

= $\frac{1}{2 \times 0.001} \sqrt{\frac{7.9 \times 10^{10}}{2650}}$
= 2729.9 kHz
= 2730 kHz

L10 INTRODUCTION TO DIELECTRICS

- electrons are tightly bound to the nucleus of an atom. here are no free electrons available for the conduction of electricity. Thus the electrical conductivity of dielectrics is very less, ideally it is zero.
- The distinction between a dielectric material and an insulator lies in the application to which it is employed. The best examples of dielectrics are glass, polymer, mica, oil and paper.
- The insulating materials are used to prevent the electrical flow of electric current to undesired locations. whereas the dielectrics are used to store electrical
energy.

1.11 DIELECTRIC PARAMETERS

1111 Dielectrie Constant

 $t = \frac{1.37 \times 10^{-3} \text{ m}}{2.37 \times 10^{-3} \text{ m}}$

Problem 1.13: Colculate the natural frequency of o cost dielectric material. If C_o is the capacitance in vacuum 1.11.1 Dielectric Constant [May 18]
• It is observed that the storing of capacity of a capacitor
increases if the space between its plate is filled with iron rod of 2.6 cm length.

Given:

Given:

Given: material i

$$
K = \frac{C}{C_0} \qquad \qquad \dots (1.44)
$$

Thus, the dielectric constant of a material is the ratio of the capacitance of a capacitor completely filled with that material to the capacitance of the same capacitor in vacuum.

ENGINEERING PHYSICS (BATU) (1.16) OSCILLATION, ULTRASONICS AND DIELECTRIC MATERIALS

In other words, the ratio of permittivity of medium to $\frac{1}{1}$
that of the vacuum is,

i.e.
$$
K = \varepsilon_t = \frac{\varepsilon}{e}
$$
 ... (1.45)

where, $K_r =$ dielectric constant

 $=$ relative permittivity. $i.e.$

The Electric Displacement field in a material is defined as,

$$
D = \epsilon_0 E + P
$$
 ... (1.46) $P = N \alpha E$... (1.48)

where, ε_0 is the permittivity of the free space or 1.12 TYPES OF POLARIZATION vacuum, E is the electic field and P is the polarization density of the electric material. \bullet When an electric field is applied to a dielectric material,

- The electric displacement field is a vector field having unit c/m^2 .
- The electric displacement field is a vector field which describes the displacement effects of an electric field on the charges within a dielectric material, such as $\vert \rightarrow \vert$ Ionic polarization (P.) polarization charges or bound charges. \triangleright Orientation polarization (P_a)
- In short it is the charge per unit area that would be \vert 1.12.1 Electronic Polarization displaced across a layer of conductor placed across an

- When an electric field E is applied to a dielectric material consisting of positive and negative charges, the positve charges move opposite to the direction of the held while negative charges in the direction of the
- The displacement of the charges creates a local dipole $|$ temperature. The polarization is given by, in the dielectric. This process is known as Dlelectrie Polarizetion.

The polarization density is defined as induced dipole $(a) \in a \circ a$ (a) $b \in b \in b$ moment per unit volume. The state of the state of the state of the Fig. 1.16: Electronic polarization

$$
P \sim E
$$

= permittivity of material or $P = \alpha E$... (1.47)

 ε_0 = permittivity of vacuum where α is a proportionality constant known as
 Example 1.11.2 Electric Displacement [May 18] **Polarizability** and the unit is fm². $\frac{[May 18]}{[May 18]}$ Polarizability and the unit is fm².

1.11.12 Electric displacement May 1,11.2 Electric material contains N dipoles per unit

volume, then,

$$
\ldots (1.48)
$$

- it creates or realigns the dipoles resulting in polarization. The main types of polarization are categorised as below
	- \triangleright Electronic polarization (P_a)
	-
	-

- electric field and the contract of the contract of atoms having electric material has large number of atoms having nudei at the centre and electrons around it in different **1.11.3 Polarization** orbits. When an electric field is applied, the nucleus moves away from the field while the electrons towards the field. Therefore, there is a displacement which is less than the dimensions of the atom, the type of polarization is called Electronic Polarization.
	- field. The electronic polarization is independent of

$$
\overline{P}_e = N\alpha_e \overline{E} \qquad \qquad \dots (1.49)
$$

Fig. 1.15 shows the concept of polarization. The Fig. 1.16 shows electronic polarization.

UNIT II

 (2.1)

2.1 INTRODUCTION TO INTERFERENCE

- The most common type of radiation which we come across in day to day life is electromagnetic wave or photon (the light quanta). Some of the electromagnetic waves can stimulate retina and some cannot. The part of the electromagnetic wave which can stimulate the retina is called Light.
- The branch of physics which deals with light is called Optics. Further, optics can be broadly classified as (a) Geometrical Optics, (b) Physical or Wave Optics and (c) Quantum Optics depending upon the basic behaviour of light assumed for explaining the optical phenomena. In the current course, our main focus will be on physical optics, where we assume the wave nature of light.
- From basic optical phenomena such as interference and diffraction, we can conclude that the light has a wave nature. In this unit, we will be studying these two basic properties of light.
- But these properties fail to explain the type of oscillations involved i.e. polarisation. The polarisation of light will be studied in later part of the text.
- The wave theory of light was proposed by Christian Huygen in 1679 but interference was demonstrated by Thomas Young only in 1802. There are several examples of interference that can be observed in everyday life. Basically, oil is colourless but a film of oil floating on water shows bright colours and also keeps on changing colour. Similarly a soap bubble, a compact disc, a thin sheet of mica or cellophane appear coloured. All this is due to interference of light.
- In engineering too, interference has wide applications such as measurement of thickness and stress, testing flatness of a surface, anti-reflecting coating etc.

2.1.1 Interference of Waves

If two waves of same frequency travel in same direction with a constant phase difference with time, they combine so that their energy is not uniformly distributed in space, but is maximum at certain points and minimum (or zero) at other points. This phenomenon is called Interference.

OPTICS, FIBRE OPTICS AND LASER

- In interference, energy is neither created (at maxima) nor destroyed (at minima) but is redistributed so that there is more energy at certain points (maxima) and less energy at other points (minima). Even after interference the total energy of the system remains constant
- Thus, interference is the redistribution of energy due to superposition of two or more waves.

Principle of Superposition

- The principle of superposition states that when two or more waves are superposed in space or a medium, the waves travel independently, through each other and the resultant displacement of each position is the algebraic/vector sum of the displacements due to each wave. Fig. 2.1 shows superposition of two waves.
- In Fig. 2.1 (a), two crests, with amplitude a_1 and a_2 are approaching each other and the point where they meet the resultant amplitude $(a_1 + a_2)$ is more than the individual amplitudes. After this, they pass through each other as though they have not interfered at all. Similarly, in Fig. 2.1 (b), one crest and one trough, with amplitude a₁ and -a₂, are approaching each other. At the point where they meet the resultant amplitude $(a_1 - a_2)$ is less than the individual amplitudes.
- The first case is called Constructive Interference and the second case is called Destructive Interference.

Fig. 2.1: Superposition

ENGINEERING PHYSICS (BATU)

(1) Constructive Interference

When the crest of one wave overlaps the crest of the other or the trough of one overlaps with the trough of the other, the displacement is maximum. This is called as Constructive Interference

Fig. 2.2: Constructive interference

In this case, the waves are in phase and the resultant amplitude equals the sum of the two component amplitudes.

i.e.
$$
A = a_1 + a_2
$$
 ... (2.1)
\nIf $a_1 = a_2 = a$
\nthen $A = 2a$... (2.2)
\nThe resultant intensity will be
\n $1 = A^2 = 4a^2$... (2.3)

Here the path difference between two waves is 0. Constructive interference will also take place when the path difference is λ or 2 λ . In general, condition for constructive interference is,

Path difference.

$$
\Delta = n\lambda \qquad ... (2.4)
$$

n = 0, 1, 2, ... n.

 (2.5)

 \bullet

where In terms of phase difference.

 Λ =

Phase difference,

$$
\delta = k\Delta, \text{ where } k = \frac{2\pi}{\lambda}
$$

$$
\delta = \frac{2\pi}{\lambda} \cdot n\lambda
$$

 $\mathcal{C}_{\mathcal{C}}$

 $\delta = 2n\pi$ (2) Destructive Interference

In the other case, when the crest of one wave overlaps the trough of other or vice-versa, the displacement is minimum. This is called as Destructive Interference.

OPTICS, FIBRE OPTICS AND LASER

- In this case, the waves are 180° out of phase and the resultant amplitude is the difference of the two component amplitudes. $A = a_1 - a_2$ i.e. (2.6) Ħ $a_1 = a_2 = a$ then $A = 0$... (2.7) The resultant intensity, $1 = A^2 = 0$ $... (2.8)$
- Here the path difference between two waves is $\lambda/2$. The same thing will happen when the path difference is 31/2 or 51/2. In general, destructive interference will occur when

Path difference,

 (2.2)

 \sim

$$
\Delta = \left(n + \frac{1}{2} \right) \lambda \qquad \qquad \dots (2.9)
$$

 $2 -$

where $n = 0, 1, 2, ..., n$ or Phase difference

$$
\delta = k \cdot \Delta \text{ where } k = \frac{4\pi}{\lambda}
$$

$$
\delta = \frac{2\pi}{\lambda} \left(n + \frac{1}{2} \right) \lambda
$$

$$
\delta = (2n + 1)\pi
$$
 ... (2.10)
2.2 INTERFERENCE OF LIGHT IN THIN FILM
Index
Table 1. \n
$$
\text{Relected rays}
$$

Fig. 2.4: Multiple reflections in a transparent thin film

- A film is said to be Thin when its thickness is of the order of wavelength of visible light (taken to be 5500 A*, which is the centre of the visible spectrum).
- A thin film may be a thin sheet of transparent material like glass, mica or an air film enclosed between two transparent sheets or a soap bubble.
- A light ray incident on a thin transparent film undergo ٠ reflection from the upper and lower surfaces of the film. They travel along different paths and may be reunited to produce Interference.

ID LASER

.in

OPTICS. FIBRE OPTICS AND LASER

Substituting equations (2.12) and (2.13) in equation (2.11), $\Delta = \mu \left(\frac{t}{\cos r} + \frac{t}{\cos r} \right) - \frac{2\mu t}{\cos r} \sin^2 r$ $\Delta = \frac{2\mu t}{\cos r} - \frac{2\mu t}{\cos r} \sin^2 r$ ÷. $\Delta = (1-\sin^2 r) \frac{2\mu t}{\cos r}$ $\Delta = \frac{2\mu t}{\cos t} \cos^2 t \quad (\cdot, \cdot \sin^2 t + \cos^2 t = 1)$ $\Delta = 2\mu t \cos r$ (2.14)

2.3.1 In Reflected System

- The path difference given by (2.14) is not the true optical path difference between rays 1 and 2. The phase change due to reflection is to be taken into account
- At B, the reflection is in a rarer medium. So, a path change of $\lambda/2$ occurs in the reflected ray BB'. At C, reflection is in a denser medium, therefore no path change occurs in ray 2.
	- :. Total path difference between rays 1 and 2 is given by,

Total path difference = Path difference due to thin film + Path difference due to reflections

$$
\Delta = 2\mu t \cos r \pm \frac{\Delta}{2} \qquad \qquad \dots (2.15)
$$

(i) Condition for Constructive Interference

- If the total path difference is equal to an integral multiple of λ then rays 1 and 2 meet in phase and undergo constructive interference.
	- $A = n\lambda$ ie.
- ∴ 2µt cos r ± $\lambda/2 = n\lambda$

 2μ t cos r = (2n ± 1) λ /2 where n = 0, 1, 2, 3 ... (2.16)

(ii) Condition for Destructive Interference

If the optical path difference is equal to an odd integral multiple of λ /2, then rays 1 and 2 meet in opposite phase and undergo destructive interference. Δ

i.e.
$$
\Delta = (2n \pm 1)\frac{\pi}{2}
$$

\n \therefore 2\mu t cos $r \pm \frac{\lambda}{2} = (2n \pm 1)\frac{\lambda}{2}$

 2μ t cos r = n λ where n = 0, 1, 2 ... and is called order of interference $...(2.17)$

- The rays incident on the film at the same angle are divided into two rays which become parallel on reflection from the surfaces of the film. Parallel rays do not intersect at finite distances, hence fringes are not observed at finite distances.
- The rays are to be condensed by a lens and interference is observed in its focal plane. Else, it can be observed by the unaided eye focused at infinity. Therefore, these interference fringes are said to be **Localized at Infinity.**

(iii) Important Cases

 $(2, 4)$

[Dec. 17]

.

٠.

 $\ddot{}$

.

¥

ī.

- If the film is extremely thin i.e. $t \le \lambda$ or $t \to 0$ then the path difference, $\Delta = \lambda/2$. The film will appear dark in reflected light.
- When monochromatic light is incident normal to the film then $\cos r = 1$.

$$
2\mu t = (2n + 1)\frac{\Lambda}{2}
$$
 for brightness

 $2\mu t = n\lambda$ for darkness. and

This implies that the film will appear bright in reflected light if the film has thickness of

$$
= \frac{\lambda}{4\mu}, \frac{3\lambda}{4\mu}, \dots
$$
 and it will appear dark

for a thickness of $t = \frac{\lambda}{2\mu}$, $\frac{2\lambda}{2\mu}$, $\frac{3\lambda}{2\mu}$

- If the incident monochromatic light is parallel, the whole film will be uniformly bright or dark as film thickness 't' and angle of refraction 'r' are constant. For a given incident wavelength (say green) the condition of constructive interference causes the incident colour to intensify (intense green).
- A change in the angle of incidence of the rays causes a change in the path difference. The optical path difference decreases with increase in angle of incidence. Hence, as inclination of the film is changed, it will appear alternately dark and bright for incident monochromatic light.
- If white light is incident on the film, the optical path difference will vary from one colour to the other as λ is different. Hence, the film will appear coloured, the colour being that of the rays which interfered constructively. Further, as the inclination of the film is changed, the film will appear coloured.

If the incident white light is not parallel, the optical path difference will change due to change in the incident angle. Hence, the film will show different colours when viewed from different directions.

ENGINEERING PHYSICS (BATU)

 Δ

 (2.5)

 (2.18)

 (2.19)

÷

OPTICS, FIBRE OPTICS AND LASER

2.3.2 In Transmitted System

. When the film is observed in transmitted light, it can be shown that the path difference between rays CC' and GG' (Fig. 2.5) is equal to 2ut cos r. Reflections at C and D are in a denser medium. So, no additional path change will occur due to reflection.

Total path difference = Path difference due to thin film

$$
+\text{ Path difference due to reflections}\\
$$

$$
\Delta = 2\mu t \cos r + 0
$$

(i) Condition for Constructive Interference

For constructive interference the total phase difference should be an integral multiple of λ.

$$
\Delta = n\lambda
$$

 \therefore 2µt cos r = n λ

(ii) Condition for Destructive Interference

For destructive interference the total phase difference should be an odd integral multiple of $\lambda/2$.

 $\Delta = (2n \pm 1)^{\frac{\lambda}{2}}$ i.e.

2ut cos r = $(2n \pm 1)\frac{\lambda}{2}$ $...(2.20)$ $\ddot{\cdot}$

As is evident, the condition for brightness on reflection becomes the condition for darkness on transmission and vice versa

2.4 INTERFERENCE IN FILMS OF NON-UNIFORM THICKNESS (WEDGE SHAPED FILM)

- A Wedge is a plate or film of varying thickness, having zero thickness at one end and progressively increasing to a particular thickness at the other end.
- Consider two plane surfaces XY and X'Y' inclined at an angle a. The thickness of the film increases linearly from X to Y.
- . When the wedge is illuminated by a parallel beam of monochromatic light, the rays reflected from its two surfaces will not be parallel. They appear to diverge from a point S near the film.
- When the film is viewed with reflected monochromatic light, Equidistant Interference Fringes are observed which are parallel to the line of intersection of the two surfaces. The fringes are alternately bright and dark and are localised at the surface of the film.

On illuminating the film with monochromatic light, one system of rays is reflected from the front surface XY and the other system of rays is obtained by transmission at the back surface X'Y' (not shown in Fig. 2.6) and consequent reflections at the front surface. As both rays are obtained from a single source. they are coherent and produce interference.

Fig. 2.6: Wedge-shaped film

The interfering rays BB' and DD' are not parallel but appear to diverge from a point S. The optical path difference between them is given by,

 $\Delta = \mu (BC + CD) - BF$

By the definition of optical path difference,

$$
\Delta = \mu (BE + EC + CD) - \mu (BE)
$$
\n
$$
\Delta = \mu (EC + CD)
$$
\n
$$
\Delta = \mu (EC + CD)
$$
\n
$$
\Delta = \mu (EC + CD)
$$
\n
$$
\therefore \quad \Delta = \mu (EP)
$$
\n
$$
\therefore \quad \Delta = 2\mu \cos (r + \alpha) \text{ as EP = DP} \cos (r + \alpha)
$$

 Δ = 2µt cos (r + α)[as EP = DP cos (r + α) = $2t \cos(r + \alpha)$

In Reflected System:

Due to reflection, an additional path change is introduced in the reflected system at point B.

.. Total path difference = Path difference due to thin film

+ Path difference due to reflections

$$
\Delta = 2\mu t \cos(r + \alpha) \pm \frac{\lambda}{2} \qquad \dots (2.21)
$$

ENGINEERING PHYSICS (BATU)

Condition for Constructive Interference:

For constructive interference the total phase difference should be an integral multiple of λ . $\Delta = n\lambda$

i.e. 2
$$
\mu
$$
 cos (r + α) $\pm \frac{\lambda}{2} = n\lambda$
\n \therefore 2 μ t cos (r + α) = (2n ± 1) $\frac{\lambda}{2}$ (2.22)

Condition for Destructive Interference:

For destructive interference the total phase difference should be an odd integral multiple of $\lambda/2$.

$$
\Delta = (2n \pm 1)\frac{2}{2}
$$

i.e. 2
$$
\mu
$$
t cos (r + α) ± $\frac{\pi}{2}$ = (2n ± 1) $\frac{\pi}{2}$

 $2\mu t \cos(r + \alpha) = n\lambda$ $\hat{\mathcal{E}}$

Fig. 2.7: Interference pattern in wedge-shaped film. Alternately bright and dark bands are parallel

If the film is illuminated by parallel light, then 'I' is constant everywhere and so is 'r', the angle of refraction. In addition, if monochromatic light is used, the path change will occur only due to 't'. In this case, the fringes will be of Equal Thickness. For a wedge shaped film, 't' remains constant only in a direction parallel to the thin edge of the wedge. So, straight fringes parallel to the edge of the wedge are obtained. The fringes are alternately bright or dark for monochromatic light. For white light, coloured fringes are obtained.

[Note : In transmitted system we will get exactly opposite of the reflected system.]

2.5 FRINGE WIDTH (B)

When a wedge film is illuminated by monochromatic light of wavelength λ , it gives fringes of equal thickness. Fringe width can be calculated by knowing the position of consecutive minima or maxima. Here, for mathematical simplicity, we will consider minima.

 $2\mu (x_{n+1} - x_n) \sin \alpha = \lambda$

$$
\therefore
$$
 Fringe width

۰

 (2.6)

 \dots (2.23)

$$
\beta = x_{n-1} - x_n = \frac{\lambda}{2\mu \sin \alpha}
$$

$$
\beta = \frac{\lambda}{2\mu \sin \alpha}
$$

 $\equiv \frac{\Lambda}{2\mu\alpha}$ (for small α and in radians) ... (2.28)

• For an air film $(\mu = 1)$, fringe width,

$$
\beta = \frac{\lambda}{2 \sin \alpha} = \frac{\lambda}{2\alpha} \text{ (for small } \alpha \text{)} \dots (2.29)
$$

Similarly, it can be shown that the fringe width for dark fringes is given by,

$$
\beta = \frac{\lambda}{2\mu \sin \alpha} \qquad \qquad \dots (2.30)
$$

which is the same as that of a bright fringe.

The width of a dark or bright fringe is however equal to \bullet half the fringe width.

 $, \texttt{in}$

Problem 2.2: Fringes are produced with monochromatic light of λ = 5450 A^{*}. A thin glass plate of μ = 1.5 is then placed normally in the path of one of the interferring beams and the central band of the fringe system is found to move into the position previously occupied by the third bright band from the centre. Calculate the thickness of the glass plate. $m = 1$ $m = 100$ **Same Stock** ÷.

FIBRE OPTICS AND LASER

nally on a soap film, hose refractive index is egion will be reflected where $n = 0, 1, 2, 3,$ 10^{-5} $\frac{10^{-5}}{2} = 2.66 \times 10^{-4}$ cm 10^{-5} $\frac{10^{-5}}{2} = 5.32 \times 10^{-5} \text{ cm}$ $\frac{10^{-5}}{2}$ = 3.8 × 10⁻⁵ cm The wavelength 5320 A° will be most strongly reflected in the visible region. **Problem 2.4:** A parallel beam of sodium light $\lambda = 5890$ A^o

strikes a film of oil floating on water. When viewed at an angle of 30° from the normal, 8th dark band is seen. the thickness of the film if refractive index of oil

 $890 \text{ A}^{\circ}, \angle i = 30^{\circ}, \mu = 1.5, n = 8$ (i) 2 µ t cos r = n λ or t = $\frac{n\lambda}{2\mu \cos r}$ $\dots(1)$ $\mu = \frac{\sin i}{\sin r}$

Ĵ

ENGINEERING PHYSICS (BATU)

Problem 2.5: Two glass plates enclose a wedge-shaped air film, touching at one edge and are separated by a wire of 0.03 mm diameter at a distance of 15 cm from the edge. Monochromatic light of $\lambda = 6000$ A^o from a broad source falls normally on the film. Calculate the fringe width of the fringes thus formed.

Data: $\lambda = 6000 \times 10^{-8}$ cm; For air film, $\mu = 1$

Diameter = 0.03 mm = 0.003 cm

Distance of fringe from the edge = 15 cm

Formula: Fringe width,

 $\beta = \frac{\lambda}{2\mu \sin \alpha} = \frac{\lambda}{2\mu \tan \alpha}$ Solution:

Problem 2.6: Interference fringes are produced by monochromatic light falling normally on a wedge-shaped film of cellophane whose refractive index is 1.4. The angle of the wedge is 20 sec of an arc and the distance between the successive fringes is 0.25 cm. Calculate the wavelength of light.

Data: $β = 0.25$ cm, $μ = 1.4$, $θ = 20$ sec

$$
= \frac{20}{60 \times 60} \times \frac{\pi}{180}
$$

$$
= \frac{1}{180} \times \frac{\pi}{180} \text{ radian:}
$$

OPTICS, FIBRE OPTICS AND LASER

Problem 2.7: Two plane rectangular pieces of glass are in contact at one edge and separated by a hair at opposite edge, so that a wedge is formed. When light of wavelength 6000 A^o falls normally on the wedge, nine interference fringes are observed. What is the thickness of the hair?

Data: $\lambda = 6000 \times 10^{-8}$ cm, n = 9, r = 0 for normal incidence

Formula: 2µt cos (r + α) = n λ

 $(2,8)$

Solution: If the fringes are seen normally and the angle of wedge is very small, then $r = 0$, so that

 $cos(r + \alpha) = cos \alpha = 1$ For air film, $\mu = 1$ $2 \mu t = n \lambda$ $\mathcal{F}_{\mathcal{F}}$ $2 \times 1 \times t = 9 \times 6000 \times 10^{-8}$ $t = \frac{9 \times 6000 \times 10^{-8}}{2} = 27 \times 10^{-5}$ cm ú. $\overline{2}$

Problem 2.8: A square piece of cellophane film with index of refraction 1.5 has a wedge-shaped section, so that its thickness at two opposite sides is t_1 and t_2 if with light of λ = 6000 A°, the number of fringes appearing on the film is 10, colculate the difference $t_2 - t_1$.

Data: $λ = 6000 × 10^{-8}$ cm, $μ = 1.5$ Formula: $2 \mu t_1 \cos(r + \alpha) = \lambda$ $\dots(1)$ **Solution:** For $(n + 10)^{th}$ dark fringe. $2 \mu t_2 \cos(r + \alpha) =$ \dots (2)

$$
(n + 10) \lambda
$$

For normal incidence, $r = 0$ and if the angle of wedge is small.

 $cos(r + \alpha) = cos \alpha = 1$ \therefore Equations (1) and (2) become $2 \mu t_1 = n \lambda$ (3) $2 \mu t_2 = (n + 10) \lambda$ $... (4)$

ENGINEERING PHYSICS (BATU)

: Subtracting equation (3) from equation (4), we get $2 \mu (t_2 - t_1) = 10 \lambda$ $t_2 - t_1 = \frac{10 \lambda}{2 \mu} = \frac{10 \times 6000 \times 10^{-8}}{2 \times 1.5}$ $\hat{\boldsymbol{\mu}}$ $t_2 - t_1 = 2 \times 10^{-4}$ cm i.e.

 (2.9)

Problem 2.9: A parallel beam of light of wavelength 5890 A° is incident on a thin film of refractive index 1.5, such that the angle of refraction into the film is 60°. Calculate the smallest thickness of the film which will make it appear dark by reflection.

Data: λ = 5890 A^o, r = 60^o, μ = 1.5 Formula: For darkness,

 $2\mu t \cos r = n\lambda$. Let $n = 1$ t = $\frac{\lambda}{2\mu \cos r} = \frac{5890 \times 10^{-8}}{2 \times 1.5 \times \cos 60}$ Solution: $t = 3.926 \times 10^{-5}$ cm

Problem 2.10. The optical path difference between two sets of similar waves from the same source arriving at a point on the screen is 199.5 λ is the point dark or bright ? If the path difference is 0.012 cm, find the wavelength of the light used.

Data: Δ_1 = 199.5 λ , Δ_2 = 0.012 cm Formula: For 199.5 λ it is odd path difference, therefore point is a dark fringe and for darkness,

 $\Delta = (2n-1)\frac{\lambda}{2}$ $\left(\because \frac{2n-1}{2}\right) = 199.5$ **Solution:** $0.012 = 199.5 \lambda$

 $\lambda = \frac{0.012}{199.5}$ \mathbb{R} $\lambda = 6.015 \times 10^{-8}$ cm \mathcal{L} $\lambda = 6015 A^{\circ}$

Problem 2.11: Two pieces of plane glass are placed together with a piece of paper between the two at one edge. Find the angle in seconds of the wedge shaped air film between the plates, if on viewing the film normally with monochromatic light of wavelength 4800 A°, there are 18 bands per cm. Solution: 18 bands per cm

 \therefore Band width, $\beta = \frac{1}{18}$ $\beta = 0.0556$ cm We know, $\beta = \frac{\lambda}{2\alpha}$

OPTICS, FIBRE OPTICS AND LASER

$$
\alpha = \frac{\lambda}{2\beta} = \frac{4800 \times 10^{-8}}{2 \times 0.0556}
$$

\n
$$
\alpha = 4.3165 \times 10^{-4} \text{ rad}
$$

\nNote conversion of radians into seconds.
\n
$$
\alpha = 4.3165 \times 10^{-4} \times \frac{180}{\pi} \times 60 \times 60
$$

 $\alpha = 89.02$ seconds

Problem 2.12: Two optically plane glass strips of length 10 cm are placed ane over the other. A thin foil of thickness 0.010 mm is introduced between the plates at one end to form an air film. If the light used has wavelength 5900 A? find the separation between consecutive bright fringes.

Solution:
$$
\tan \alpha = \frac{1}{x}
$$

\n
\nAs α is very small, $\tan \alpha = \alpha$
\n $\alpha = \frac{1}{x} = \frac{0.001}{10}$
\n $\alpha = 0.0001 \text{ rad}$
\n $\beta = \frac{\lambda}{2\alpha} = \frac{5.9 \times 10^{-5}}{2 \times 0.0001}$
\n
\nNote while using α in calculation it must be all radians. If it is given in seconds then convert it in

the time in rad. J.

Problem 2.13: Find the thickness of a wedge-shaped film at a point where fourth bright fringe is situated. A for sodium light is 5893 A ° Data: $n = 4$, $\lambda = 5893 A^{\circ}$

Formula: For bright band and wedge-shaped film,

2µt cos (r + α) = (2n - 1)
$$
\frac{\pi}{2}
$$

\nLet normal incidence, r = 0 and α is very small
\n \therefore cos (r + α) = 1, μ = 1
\n \therefore 2t = (2n - 1) $\frac{\lambda}{2}$
\nSolution: 2t = $\frac{(2 \times 4 - 1)\lambda}{2}$
\nt = $\frac{7}{4} \times 5893 \times 10^{-8}$
\n[$t = 1.031275 \times 10^{-4}$ cm

ENGINEERING PHYSICS (BATU)

OPTICS, FIBRE OPTICS AND LASER

Problem 2.14: Monochromatic light emitted by a broad source of light of wavelength 6×10^{-5} cm falls normally on two glass plates which enclose a thin wedge-shaped film of air. The plates touch at one end and are separated at a point 15 cm from the end by a wire 0.5 mm in diameter. Find the width between any two consecutive bright fringes. Solution:

$$
\begin{array}{rcl}\n\text{a} & 0.005 \text{ cm} \\
\hline\n\text{a} & 15 \text{ cm} & \rightarrow \\
\alpha & = & \frac{1}{x} = \frac{0.005}{15} = 3.333 \times 10^{-4} \text{ rad} \\
\text{Bandwidth, } \beta & = & \frac{\lambda}{2\alpha} \\
\beta & = & \frac{6 \times 10^{-5}}{2 \times 3.333 \times 10^{-4}} \\
\boxed{\beta = 0.09 \text{ cm}}\n\end{array}
$$

Problem 2.15: Fringes of equal thickness are observed in a thin glass wedge of refractive index 1.52. The fringe spacing is 1 mm and the wavelength of light is 5893 A°. Calculate the angle of wedge in seconds of an arc.

 λ = 5890 A^o

 $\mu = 4/3 = 1.33$ $t = 1.5 \times 10^{-4}$ cm $\mu = 1.52$ Data: $i = 45^{\circ}$ λ = 5893 A^o $\lambda = 5 \times 10^{-5}$ cm $\beta = 1$ mm Formulae: (i) By Snell's law, Formula: Fringe width is, $\frac{\sin i}{\sin r} = \mu$ $\beta = \frac{\lambda}{2 \alpha}$ **Solution:** $1 \times 10^{-1} = \frac{5893 \times 10^{-8}}{2 \alpha}$ (ii) 2μt cos r = $nλ$ **Solution:** (i) $\frac{\sin 45^\circ}{\sin 1^\circ} = 1.33$ $\alpha = \frac{5893 \times 10^{-8}}{2 \times 1 \times 10^{-1}}$ $\mathcal{L}_{\mathcal{L}}$ $sin r = \frac{0.707}{1.33}$ $\alpha = 2.9 \times 10^{-4}$ radian $\alpha = \frac{2.9 \times 10^{-4} \times 180 \times 60 \times 60}{2.34}$ of an arc $sin r = 0.53038$ α 3.14 $r = 32^{\circ}$ α r $= 59.8$ sec. (ii) The order of interference will be given by (condition for Problem 2.16: A parallel beam of sodium light strikes a film dark band) of oil floating on water. When viewed at an angle 30° from 2 ut cos r = $n \lambda$ the normal, in the reflected light, eighth dark band is seen. $n = \frac{2 \times 1.33 \times 1.5 \times 10^{-4} \times \cos 32^{\circ}}{1.33 \times 1.5 \times 10^{-4} \times \cos 32^{\circ}}$ Determine the thickness of the film. Refractive index of oil is 5×10^{-5} 1.46 and $\lambda = 5890 \text{ A}^{\circ}$. $n = 6.78$ $i = 30^{\circ}$ Data: μ = 1.46 The order of interference,

 (2.10)

Formulae: (i) By Snell's law,

(ii) $2\mu t \cos r = n\lambda$

Solution: $\overline{(i)\frac{\sin 30}{\sin r}} = 1.46$

 \mathcal{N} .

interference band.

Data:

 $\frac{\sin i}{\sin r} = \mu$

sin r = $\frac{0.5}{1.46}$ = 0.34247

(iii) The thickness is given by relation (condition for minima)

 $t = \frac{8 \times 5890 \times 10^{-8}}{2 \times 1.46 \times \cos 20^{\circ}}$ $t = 1.7 \times 10^{-4}$ cm Problem 2.17: A soap film of refractive index 4/3 and thickness 1.5×10^{-4} cm is illuminated by white light incident at an angle of 45". The light reflected by it is examined by a spectroscope in which is found a dark and corresponding to

wavelength of 5 \times 10⁻⁵ cm. Calculate the order of

 $r = 20^{\circ}$

 $2 \mu t \cos r = n \lambda$

 $n = 6$

ENGINEERING PHYSICS (BATU) Problem 2.18: A wedge shaped air film having an angle of 40 seconds is illuminated by monochromatic light and fringes in reflected system are observed through a microscope. The distance between the consecutive bright fringes was measured as 0.12 cm. Calculate the wavelength of light used. $\alpha = 40$ sec. Data: $\beta = 0.12$ cm $\alpha = 40$ sec $40 \times \pi$ $\alpha = \frac{40 \times \pi}{60 \times 60 \times 180}$ radian $\alpha = 1.9 \times 10^{-4}$ rad. Formula: The fringe width is given by, $\beta = \frac{\lambda}{2\alpha}$ $\lambda = 2 \beta \alpha$ Solution: $\lambda = 2 \times 0.12 \times 1.9 \times 10^{-4}$ $\lambda = 5 \times 10^{-5}$ cm λ = 5000 A° Problem 2.19: A parallel beam of monochromatic light of wavelength λ = 5890 A* is incident on a thin film of μ = 1.5 such that the angle of refraction is 60°. Find the maximum thickness of the film so that it appears dark for normal incidence, what is the thickness required? λ = 5890 A^o Data:

 $r = 60^{\circ}$ $\mu = 1.5$ Formula: For dark band, $2 \text{ } \mu \text{t} \cos r = n \lambda$ $t = \frac{1}{2 \text{ ft} \cos r}$ $n \lambda$ **Solution:** For maximum thickness, $n = 1$ $t = \frac{1 \times 5890 \times 10^{-8}}{2 \times 1.5 \times \cos 60}$ $t = 4 \times 10^{-5}$ cm For normal incidence, $r = 0$ and hence cos $r = 1$. $t = {1 \times 5890 \times 10^{-8} \over 2 \times 1.5 \times \cos 0}$ \mathcal{L} $t = 2 \times 10^{-5}$ cm

Problem 2.20: An oil drop of volume 0.2 cc is dropped on the surface of a water tank of area 1 sq. m. The thin film spreads uniformly over the whole surface and white light reflected normally is observed through a spectrometer. The spectrum is seen to contain a first dark band whose centre has a wavelength of 5.5 \times 10⁻⁵ cm. Find the refractive index of oil.

OPTICS, FIBRE OPTICS AND LASER $V = 0.2$ cc Data: $A = 1 sq. m.$ $n = 1$ $\lambda = 5.5 \times 10^{-5}$ cm Formulae: (i) Volume = Area x thickness (ii) 2ut cos $r = n\lambda$ **Solution:** (i) $0.2 = 1 \times 10^4 \times t$ $t = 2 \times 10^{-5}$ cm (ii) For minima, 2 ut cos r = $n \lambda$ $r = 0$ Let, $\mu = \frac{n\lambda}{2t}$ $\mu = \frac{1 \times 5.5 \times 10^{-5}}{2 \times 2 \times 10^{-5}}$ $\mu = 1.375$

 (2.11)

Problem 2.21: A beam of monochromatic light of wavelength 5.82 \times 10⁻⁷ m falls normally on a glass wedge of wedge angle of 20 seconds of an arc. If the refractive index of glass is 1.5, find the number of dark interference fringes per cm of the wedge length. $\lambda = 5.82 \times 10^{-7}$ m Data:

 $\theta = 20$ seconds $\mu = 1.5$ The angle in degrees, $\theta = \frac{20}{60 \times 60} \times \frac{\pi}{180}$ $\theta = 9.69 \times 10^{-5}$ Formula: The fringe width $\beta = \frac{\Lambda}{2\mu\theta}$ 5.82×10^{-7} $\beta = \frac{3.02 \times 1.5 \times 9.69 \times 10^{-5}}{2 \times 1.5 \times 9.69 \times 10^{-5}}$ Solution: $\beta = 0.2 \times 10^{-2}$ m = 0.2 cm **Star** .. Number of dark fringes/cm = $\frac{1}{\beta}$ = $\frac{1}{0.2}$ = $\boxed{5}$

Problem 2.22: A parallel beam of sodium light of wavelength 5890 \times 10⁻⁸ cm is incident on a thin glass plate of refractive index 1.5, such that the angle of refration into the plate is 60°. Calculate the smallest thickness of the plate which will make it appear dark by reflection.

 $\lambda = 5890 \times 10^{-8}$ cm Data: $\mu = 1.5$ $r = 60^{\circ}$

ENGINEERING PHYSICS (BATU)

2.6 NEWTON'S RINGS

 (2.12)

Formula: The condition for dark fringe in reflected system is 2μ t cos r = n λ **Solution:** Taking $n = 1$ $2 \times 1.5 \times t \times \cos 60 = 5890 \times 10^{-8}$

 $t = 3.926 \times 10^{-3}$ cm \mathcal{A}

= 3.926×10^{-5} cm

[May 18, 19]

- When a Plano-Convex Lens of large focal length with its convex surface is placed in contact with a Plane Glass Plate, an air film of gradually increasing thickness is formed between them. The thickness of the film at the point of contact is zero and increases gradually outwards.
- If monochromatic light is allowed to fall normally, and the film is viewed in reflected light, alternate Bright and Dark Rings are observed. These rings are concentric around the point of contact between the lens and the glass plate. These fringes are called as Newton's Rings as they were discovered by Newton.

(i) Experimental Arrangement

- A plano-convex lens L of large radius of curvature is placed on a plane glass plate P. The point of contact between them is O. The light from an extended monochromatic source (sodium lamp) falls on a glass plate G held at an angle of 45° with the vertical.
- The glass plate G reflects normally a part of the incident light towards the air film between the lens L and the glass plate P. A part of the incident light is reflected by the curved surface of the lens L and a part is transmitted which is reflected back from the plane surface of plate P (i.e. rays are reflected from the top and bottom surfaces of the air film). These two reflected rays interfere and produce an Interference Pattern in the form of Circular Rings.
- These rings are Localised in the air film and can be seen with a microscope focused on the film.

(a) Typical Newton's rings pattern observed in reflected light

(ii) Explanation of the Formation of Newton's Rings

Fig. 2.10: Formation of Newton's rings

- When a monochromatic ray of light AB, is incident on the system, it gets partially reflected at C, the bottom of curved surface of the lens (glass-air boundary). This goes out in the form of ray 1 without any phase reversal. The other part is refracted along CD.
- At D, the top surface of the plane glass plate, it gets partially reflected to form ray 2. This ray has a phase reversal as it is reflected from air to glass boundary.
- As the rays 1 and 2 are derived from the same source and are coherent, so they interfere to form fringes. Interference does not take place between rays reflected from the surfaces of lens and glass plate due to their thickness which is much larger than wavelength of light.

(iii) Derivation

The radius of curvature of plano-convex lens is very large and the small section of the air film trapped between lens and the glass plate will be similar to a wedged air film. Therefore, the optical path difference will be same as that of wedged air film.

.in

The optical path difference for wedge film is, ... (2.31) $\Delta = 2\mu t \cos(r + \alpha)$ For air film, $\mu = 1$, for normal incidence $\cos r = 1$ and $\alpha \approx 0$... (2.32) $\Delta = 2t$ \mathcal{L}_c

 (2.13)

÷.

In Reflected System Total optical path difference = Path difference due to thin film + Path difference due to reflections

 $\Delta = 2t \pm \frac{\lambda}{2}$ α (2.33)

Condition for Constructive Interference

ENGINEERING PHYSICS (BATU)

For constructive interference the total phase difference should be an integral multiple of λ.

$$
\Delta = n\lambda
$$

\n
$$
\therefore 2t \pm \frac{\lambda}{2} = n\lambda
$$

\n
$$
2t = \left(n \pm \frac{1}{2}\right)\lambda
$$
 ... (2.34)

Condition for Destructive Interference

For destructive interference the total phase difference should be an odd integral multiple of $\lambda/2$.

$$
\Delta = (2n \pm 1)\frac{\lambda}{2}
$$

\n
$$
\therefore 2t \pm \frac{\lambda}{2} = (2n \pm 1)\frac{\lambda}{2}
$$

\n
$$
2t = n\lambda
$$
 ... (2.35)
\nii of Rriabt Rings

Radii of Bright Rings

. The plano-convex lens LOL' is placed on a glass plate AB. The point C is the centre of the sphere of which LOL' is a part. Let R be the radius of curvature of the lens and r_n be the radius of the n^{th} Newton's rings corresponding to the constant film thickness 't'.

By the property of circle (theorem of intersecting chords). $NP \times NQ = NO \times ND$ $r_n \times r_n = t (2R - t) = 2Rt - t^2 \approx 2Rt$ iе (as t² is very small) $r_{.}^{2}$ = 2Rt (2.36) $t = \frac{r}{2R} = \frac{D^2}{8R}$ or (D_n being diameter of n^{th} bright ring) ... (2.37) From equations (2.37) and (2.34), $\frac{2r_{\text{n}}^2}{2R}$ = (2n ± 1) $\frac{\lambda}{2}$ D_n^2 λ

OPTICS, FIBRE OPTICS AND LASER

$$
2 \cdot \frac{1}{8R} = (2n \pm 1) \cdot 2 \lambda R
$$

$$
D_n = \sqrt{2\lambda R} \cdot \sqrt{2n \pm 1} \text{ i.e. } D_n \approx \sqrt{2n \pm 1} \dots (2.38)
$$

Equation (2.38) shows that diameter of a bright ring is proportional to the square root of odd natural numbers.

[Dec. 18] **Radii of Dark Rings** The condition for formation of dark Newton's ring is, $2t = n\lambda$ (2.39)

Substituting for t from (8),

$$
2 \cdot \frac{D_n^2}{8R} = n\lambda
$$

$$
D_n^2 = 4n \lambda R \qquad ...(2.40)
$$

$$
D_n = 2 \sqrt{n\lambda R} \text{ i.e. } D_n \propto \sqrt{n} \qquad ...(2.41)
$$

Thus, the diameter of a dark ring is proportional to the square root of a natural number.

2.6.1 Properties of Newton's Rings

Rings get Closer Away from the Centre: Consider
equation (2.41) giving the diameter of a dark ring. We have $D_n \propto \sqrt{n}$ and $D_{n+1} \propto \sqrt{n+1}$ \therefore D_{n+1}-D_n $\approx (\sqrt{n+1} - \sqrt{n})$ If constant of proportionality is taken as 1, then $D_{n+1} - D_n = \sqrt{n+1} - \sqrt{n}$.. $D_2 - D_1 = \sqrt{2} - \sqrt{1} = 0.414$ $D_3 - D_2 = \sqrt{3} - \sqrt{2} = 0.317$

Therefore, the Fringe Width Decreases with the order of the fringe and the fringes get closer as the order increases. This can be shown for bright rings too. **Convex Lens** This can also be explained in another way. The angle of the \mathbf{r} wedge increases as one moves away from the centre. From the equation for fringe spacing $\beta = \frac{\lambda}{2\mu\alpha}$ the fringe the nth dark rings, then separation decreases as the wedge angle α increases. Hence, the rings come closer with increase in their radii. $D_n^2 = 4 n \lambda R$ Similarly, for $(n + p)^{th}$ dark rings, Dark Central Spot: At the point of contact of the lens $\overline{2}$ $4(n + n)$ λ R with the glass plate, the thickness of the air film $t = 0$. From equation (3), it can be seen that the path difference between rays reflected from the top and bottom surfaces of the film is $\lambda/2$. Hence, the

 (2.14)

 \bullet

and interfere destructively. Thus, a Dark Spot is produced at the centre. Fringes of Equal Thickness: It can be seen from equations (4) and (5) that Maxima and Minima Occur Alternately due to variation in the thickness t' of the film. Each maxima or minima is, therefore, a locus of constant film thickness. Hence, the fringes are called fringes of equal thickness.

interfering waves at the centre are opposite in phase

ENGINEERING PHYSICS (BATU)

- Circular Fringes: The circular wedge of air film may be regarded as having an axis passing through the point of contact O. This film bulges from the point of contact to outward with gradually increasing thickness of air film. The locus of points having the same thickness falls on a circle having its centre at the point of contact. Thus the thickness of the air film is the same at all points on any circle having O as the centre. The fringes are therefore circular. If the thickness satisfies the condition for constructive interference, the Circular Fringe is bright; otherwise it is dark.
- Localised Fringes: When the system is illuminated with a parallel light beam, the reflected rays are not parallel. They interfere near to the top surface of the film. When viewed from the top, the rays appear to diverge. As the fringes are seen at the upper surface of the film, they are said to be localised in the film.
- White Light: With white light, few Coloured Fringes are seen at centre. Away from centre they overlap.

OPTICS. FIBRE OPTICS AND LASER **2.7 APPLICATIONS OF NEWTON'S RINGS** 2.7.1 Determination of Wavelength of Incident Light or Radius of Curvature of Plano-The experimental arrangement is shown in Fig. 2.9 (b). Let R be the radius of curvature of the lens and λ the wavelength of the light used. If D_n is the diameter of

 $... (2.42)$

 (2.43)

$$
D_{n+p} = 4 (n+p) \wedge R
$$

Subtracting (2.42) from (2.43), we get,

$$
D_{n+p}^{2} - D_{n}^{2} = 4 p \lambda R
$$

$$
\therefore \qquad \lambda = \frac{D_{n+p}^{2} - D_{n}^{2}}{4 p R} \qquad \dots (2.44)
$$

- The microscope is adjusted to obtain Newton's rings. The centre of the cross wire is made to coincide with the central dark fringe. Counting the central fringe as $n = 0$, the cross wire is moved to n^{th} and $(n + p)^{\text{th}}$ dark fringe to the left and position of microscope is noted on micrometer screw gauge.
- ä In the same way position of n^{th} and $(n + p)^{th}$ fringe is noted on right. Subtracting position on left and right for n^{th} and $(n + p)^{\text{th}}$ fringe gives diameter of n^{th} and $(n + p)^{th}$ fringe respectively.
- Radius of curvature 'R' is found using a spherometer.
- The wavelength λ of monochromatic source of light is found using relation (2.44). If λ is known, then same relation may be used to find R.

2.7.2 Determination of Refractive Index of a Liquid

Firstly, perform the experiment when there is an air film between the glass plate and plano-convex lens. The system is placed in a metal container. The diameter of n^{th} and $(n + p)^{th}$ dark rings are determined using a travelling microscope. For air,

$$
D_{n+p}^2 - D_n^2 = 4 p \lambda R
$$
 ... (2.45)

Pour the liquid, whose refractive index is to be determined, in the container without disturbing the arrangement. The air film between the lower surface of the lens and the upper surface of the plate is replaced by the liquid. Now, measure the diameter of the nth and $(n + p)^{th}$ dark rings.

dark rings in liquid, then $\overline{2}$ $4n\lambda R$

$$
D_{n}^{2} = \frac{4(n+1)\lambda R}{\mu}
$$
 ... (2.49)

$$
D_{n+p}^{2} = \frac{4(n+1)\lambda R}{\mu}
$$
 ... (2.50)

 (2.51)

Subtracting (2.49) from (2.50), we get $D_{n+p}^{'2} - D_{n}^{'2} = \frac{4 p \lambda R}{\mu}$

 $\mu = \frac{D_{n+p}^2 - D_n^2}{D_{n+p}^2 - D_n^2}$ (2.52) Fig. 2.12: Experimental arrangement for

measurement of R.I. of liquid Problem 2.23: A convex lens is placed on a plane glass slab

and is illuminated by a monochromatic light. The diameter of the 10th dark ring is measured and is found to be 0.433 cm. The radius of curvature of the lower surface of the lens is 70 cm. Find the wavelength of the light used.

Data: $R = 70$ cm, $n = 10$, $D_n = 0.433$ cm $D_n^2 = 4 n R \lambda$ Formula: **Solution:** $(0.433)^2 = 4 \times 10 \times 70 \times \lambda$ $\lambda = \frac{(0.433)^2}{4 \times 10 \times 70}$ $\ddot{\cdot}$ $\lambda = 6.696 \times 10^{-5}$ cm $= 6696 A^{\circ}$ Problem 2.24: In a Newton's rings experiment, the diameter

of the 15th dark ring was found to be 0.590 cm and that of the 5th dark ring was 0.336 cm. If the radius of the planoconvex lens is 100 cm, calculate the wavelength of the light used.

OPTICS, FIBRE OPTICS AND LASER

Data: $D_{15} = 0.590$ cm, $D_5 = 0.336$ cm, $R = 100$ cm, $m = 10$

Formula:
$$
\lambda = \frac{(D_{n+m})^2 - (D_n)^2}{4mR}
$$

Solution:
$$
\lambda = \frac{D_{15}^2 - D_5^2}{4 \times 10 \times R} = \frac{(0.590)^2 - (0.336)^2}{4 \times 10 \times 100}
$$

$$
\lambda = 5.880 \times 10^{-5} \text{ cm}
$$

$$
\lambda = 5880 \text{ A}^{\circ}
$$

Problem 2.25: The diameter of a dark ring in Newton's rings experiment decreases from 1.4 cm to 1.2 cm when air is replaced by a liquid as medium between lens and flat surface. Calculate the refractive index of the liquid. **Data:** $D_{air} = 1.4$ cm, $D_{liquid} = 1.2$ cm

Problem 2.26: The diameter of the tenth dark ring in Newton's rings experiment is 0.5 cm. Calculate the radius of curvature of the lens and the air thickness at the position of the ring. The wavelength of light used is 5000 A°. Data: $D_{10} = 0.5$ cm, $n = 10$, $\lambda = 5000 \times 10^{-8}$ cm

Formulae: (i)
$$
D_n^2 = 4nR\lambda
$$
, (ii) $t = \frac{D_n^2}{8R}$
\n**Solution:** (i) $R = \frac{D_n^2}{4n\lambda} = \frac{0.5^2}{4 \times 10 \times 5000 \times 10^{-8}}$
\n $\boxed{R = 125 \text{ cm}}$

.in

ENGINEERING PHYSICS (BATU)

OPTICS, FIBRE OPTICS AND LASER

 (2.16)

Problem 2.27: In a Newton's ring experiment, find the radius of curvature of the lens surface in contact with the glass plate when with a light of wavelength 5890 A°, the diameter of the third dark ring is 0.32 cm. The light is incident normally.

Data:
$$
\lambda = 5890 \text{ A}^{\circ}, \text{ D}_3 = 0.32 \text{ cm}, \text{ } n = 3
$$

\n**Formula:** $D_n^2 = 4 \text{Rn} \lambda$
\n**Solution:** $R = \frac{D_n^2}{4n\lambda}$
\n $R = \frac{(0.32)^2}{4 \times 3 \times 5890 \times 10^{-5}}$

$$
R = 144.87 \text{ cm}
$$

Problem 2.28: In Newton's rings, the diameter of a certain bright ring is 0.65 and that of tenth ring beyond it is 0.95 cm. If λ = 6000 A°, calculate the radius of curvature of a convex lens surface in contact with the glass plate. [May 18]

Data:
$$
D_n = 0.65
$$
 cm, $D_{n+p} = 0.95$ cm,
\n $\lambda = 6 \times 10^{-5}$ cm
\n**Formula:**
$$
\frac{(D_{n+p})^2 - D_n^2}{4m\lambda}
$$
\n**Solution:** $R = \frac{(0.95)^2 - (0.65)^2}{4 \times 10 \times 6 \times 10^{-5}}$

R = 200 cm
Problem 2.29: In a Newton's ring experiment, a drop of water $\left(\mu = \frac{4}{3}\right)$ is placed between the lens and the plate. In

this case, the diameter of the 10th ring was found to be 0.6 cm. Calculate the radius of curvature of the face of the lens in contact with the plate. Given: $\lambda = 6000$ A °.

Data: μ = 1.3333, D₁₀ = 0.6 cm, λ = 6 × 10⁻⁵ cm, n = 10

Formula:
$$
D_n^2 = \frac{4n\lambda R}{\mu}
$$

Solution:
$$
R = \frac{D_n^2 \times \mu}{4n\lambda} = \frac{(0.6)^2 \times 1.3333}{4 \times 10 \times 6 \times 10^{-5}}
$$

$$
R = 200 \text{ cm}
$$

Problem 2.30: Newton's rings are observed in reflected length of λ = 5900 A°. The diameter of the 5th dark ring is 0.4 cm. Find the radius of curvature of the lens and thickness of the air film. **Data:** $\lambda = 5.9 \times 10^{-5}$ cm, $n = 5$, $D_s = 0.4$ cm, $\therefore r = 0.2$ cm. $D_n^2 = 4nR\lambda$ Formula: $R = \frac{(0.4)^2}{4 \times 5 \times 5.9 \times 10^{-5}}$ Solution:

$$
R = 135.59 \text{ cm}
$$

$$
t = \frac{t^2}{2R} = \frac{(0.2)^2}{2 \times 135.59}
$$

$$
t = 1.475 \times 10^{-4} \text{ cm}
$$

Problem 2.31: In a Newton's ring experiment, the diameters of 4th and 12th dark rings are 0.4 cm and 0.7 cm respectively. Calculate the diameter of 20th dark ring.

Data: m = 12, n = 4, D_m = 0.7 cm, D_n = 0.4 cm.
\nFormulae: (i) R =
$$
\frac{D_{n+m}^2 - D_n^2}{4 (m-n) λ}
$$

\n(ii) D_n² = 4nRλ
\n∴ D_n² = 4n $\left(\frac{D_{n+m}^2 - D_n^2}{4 (m-n) λ}\right) \cdot λ$
\n $D_n^2 = \frac{4n (D_{n+m}^2 - D_n^2)}{4m}$
\nSolution: D₂₀² = 4 × $\frac{(0.7)^2 - (0.4)^2}{4(8)} \times 20 = \boxed{0.908 \text{ cm}}$

Problem 2.32: If the diameter of nth dark ring in a Newton's ring experiment changes from 0.3 cm to 0.25 cm, as liquid is placed between the lens and the plate, calculate the value of μ of the liquid.

Data:
$$
D_{air} = 0.3 \text{ cm}, D_{liquid} = 0.25 \text{ cm}
$$

\n**Formula:** $\mu = \frac{(D_{o})_{air}^2}{(D_{o})_{liquid}^2}$
\n**Solution:** $\mu = \frac{(0.3)^2}{(0.25)^2} = 1.44$

Problem 2.33: In Newton's rings experiment the diameters of n^{th} and $(n + 8)^{th}$ bright rings are 4.2 mm and 7.00 mm respectively. Radius of curvature of the lower surface of the lens is 2.00 m. Determine the wavelength of the light.

ENGINEERING PHYSICS (BATU)

Problem 2.34: Newton's rings are formed by light reflected normally from a plano-convex lens and a plane glass plate with a liquid between them. The diameter of nth ring is 2.18 mm and that of $(n + 10)^{th}$ ring is 4.51 mm. Calculate the refractive index of the liquid, given that the radius of curvature of the lens is 90 cm and wavelength of light is 5893 A*

Data:
\n
$$
D_n = 2.18 \text{ mm}
$$
\n
$$
D_{n+10} = 4.5 \text{ mm}
$$
\n
$$
R = 90 \text{ cm}
$$
\n
$$
λ = 5893 A^o
$$
\n**Formula:**
\n
$$
R = \frac{\mu (D_{n+m}^2 - D_n^2)}{4mλ}
$$
\n
$$
\mu = \frac{4 m λ R}{D_{n+m}^2 - D_n^2}
$$
\n**Solution:**
\n
$$
\mu = \frac{4 \times 10 \times 5893 \times 10^{-8} \times 90}{0.45^2 - 0.218^2}
$$

$$
\mu = 1.368
$$

Problem 2.35 : In a Newton's rings experiment, the diameter of the 5th ring was 0.336 cm and that of 15th ring was 0.59 cm. Find the radius of curvature of the planoconvex lens, if the wavelength of light used is 5890 A°.

Data: $D_{15} = 0.59$ cm $D_5 = 0.336$ cm λ = 5890 A* $m = 10$

(2.17)

\n**OrTCS, FIBRE OPTCS AND LASER**

\nFormula:

\n
$$
R = \frac{D_{n \times n}^{2} - D_{n}^{2}}{4 \pi \lambda}
$$
\nSolution:

\n
$$
R = \frac{D_{1S}^{2} - D_{s}^{2}}{4 \times 10 \times \lambda}
$$
\n
$$
R = \frac{(0.59)^{2} - (0.336)^{2}}{4 \times 10 \times 5890 \times 10^{-8}}
$$
\n[2.8 INTRODUCTION TO POLARIZATION

- The phenomenon like interference or diffraction prove the wave nature of light. But it does not tell us whether the light waves are longitudinal or transverse. Because even longitudinal waves, like sound waves, show the phenomena of interference and diffraction.
- The important difference between longitudinal and ٠ transverse wave is that the transverse waves can be polarized.
- The phenomenon of polarization can be explained only ٠ by considering the transverse nature of light. And it has been proved by electromagnetic theory that the light is transverse wave.

2.9 POLARIZATION OF WAVES

- The transverse nature of waves leads to the characteristic phenomenon called Polarization. The characteristic, polarization is not exhibited by longitudinal waves. Thus only transverse waves could be polarized.
- In a transverse wave, if the directions of all the vibrations at all the points are restricted to one particular plane, then the wave is called Polarized, more specific plane polarized. A plane polarized wave is the simplest of a transverse wave, which is also termed as Linearly Polarized Wave.

According to the electromagnetic theory, light consists of electric and magnetic vectors vibrating continuously with time in a plane, transverse to the direction of propagation of light and to each other. However, in explaining polarization only the vibrations of the electric vector are considered.

It does not mean that magnetic field vectors are absent, they are present. But for drawing simplicity they are not shown in the diagram.

ENGINEERING PHYSICS (BATU)

(i) Unpolarized Light

The light having vibrations along all possible directions perpendicular to the direction of propagation of light, is called an Unpolarized Light. The vibrations are symmetrical about the direction of propagation of light

 (2.18)

Fig. 2.13: Unpolarized fig

It can be considered to consist an infinite number of waves each having its own vibration. Since unpolarized light has vibrations along all possible directions, at right angles to the directions of propagation of light, it is represented by a star.

(ii) Polarized Light

- The light having vibration only along a single plane perpendicular to the direction of propagation of light is called a Polarized Light. It's vibrations are one sided, therefore it is dissymmetrical about the direction of propagation of light.
- The polarized beam of light has vibrations along a single plane. If they are parallel to the plane of the paper, they are represented by arrows [See Fig. 2.14 (a)]. If they are perpendicular to the plane of the paper, they are represented by dots on a ray of light. [See Fig. 2.14 (b)].

(a) Parallel to plane of paper

(b) Perpendicular to plane of paper Fig. 2.14: Plane polarized light

(iii) Partially Polarized Light

- A partially polarized light is a mixture of plane polarized and unpolarized light. It is represented as shown in Fig. 2.15.
- In partially polarized light the vibrations in the plane of plane polarized light dominate over the vibrations in other directions.

Fig. 2.15: Partially polarized light

OPTICS, FIBRE OPTICS AND LASER

POLARIZED LIGHT Although polarized light has many applications in science and engineering, but the light available naturally is unpolarized. So different methods have been developed to obtain polarized light artificially.

2.11 METHODS OF PRODUCTION OF

- Every method uses one or the other optical phenomena like reflection, refraction, scattering, double refraction etc., for getting polarized light.
- Here we will be learning some of the methods for obtaining plane polarized light.

2.11.1 Production of Plane Polarized Light by **Reflection** [May 18]

Polarization of light by reflection from the surface of glass was discovered by Malus in 1808. He found that polarized light is obtained when ordinary light is reflected by a plane sheet of glass.

Fig. 2.16

- Consider the light incident along the path AB on the glass surface. A part of light is reflected along BC. In the path of BC, place a tourmaline crystal and rotate it slowly. It is observed that light is completely extinguished only at one particular angle of incidence.
- At any other angle of incidence there is preferential reflection of the components having vibrations perpendicular to the plane of incidence.
- This angle of incidence is equal to 57.5° for a glass surface and is known as the Polarization Angle.
- The vibrations of the incident light can be resolved into components-parallel to the reflecting surface (glass surface) and perpendicular to the reflecting surface. Light due to the components parallel to the reflecting surface is reflected whereas light due to the components perpendicular to the reflecting surface is transmitted i.e. the plane of the vibrations of reflecting rays are at right angles to the plane of incidence and the plane of vibrations of refracted rays are in the plane of incidence. Thus, light reflected by the surface is polarised in the plane of incidence and can be detected by tourmaline crystal.

ENGINEERING PHYSICS (BATU)

Note

- . If light is polarised perpendicular to the plane of incidence, it means that vibrations are in the plane of incidence
- If light is polarised in the plane of incidence, it means that vibrations are perpendicular to the plane of incidence.

Polarizing Angle or Angle of Polarization

- It is defined as that angle of incidence on the reflecting surface for which reflected light is completely plane polarized.
- As the refractive index of a substance varies with the wavelength of the incident light, the polarizing angle will be different for light of different wavelength. Therefore, polarising angle will be complete only for light of a particular wavelength at a time i.e. for monochromatic light (for a given surface).

Brewster's Law

In 1811, Sir David Brewster found that ordinary light is completely polarised in the plane of incidence when it gets itself reflected from a transparent medium at a particular angle known as the Polarizing Angle.

- He was able to prove that, the tangent of the angle of polarisation is numerically equal to the refractive index of the medium. i.e. $\mu = \tan i_{\text{m}}$.
- Consider unpolarised light is incident on the glass surface at the polarising angle. It is reflected along BC and refracted along BD.

From Snell's law,

$$
= \frac{\sin i}{\sin r} \qquad \qquad \dots (2.53)
$$

From Brewster's law.

μ

 (2.19)

Therefore, reflected and refracted rays are at right angles to each other.

2.11.2 Production of Plane Polarized Light by **Refraction: Pile of Plates**

When unpolarized light is incident at an polarizing angle on a transparent surface the reflected light is polarized completely whereas refracted light is partially polarized.

Fig. 2.18: Polarization by refraction

- If more than one refracting surface i.e. stack of glass \bullet plates are used in place of one, the process is repeated. At every surface, the unpolarized component decreases, thus the polarized component becomes prominent, giving almost plane polarized light in the direction parallel to the pile of plates.
- A pile of plates contains about 15 glass plates placed in a metal tube of suitable size. The plates are kept at 33° with the axis of tube so that the incident unpolarized light is incident at polarizing angle at the first plate.
- The unpolarized light entering in the tube will undergo ٠ successive reflection and refraction such that the emerging ray is plane polarized light.
2.11.3 Double Refraction

OPTICS, FIBRE OPTICS AND LASER

The phenomenon of double refraction was discovered by Erasmus Bartholinus in 1669 during his studies on calcite. When light is incident on a calcite crystal, it is found to produce two refracted rays which are different in properties. The phenomenon of causing Two Refracted Rays by a crystal is called Birefringence or Double Refraction. The crystals are said to be

Fig. 2.19: Double reflection

- All anisotropic materials exhibit double refraction. The two rays formed in double refraction are linearly polarized in mutually perpendicular directions.
- One of the rays obeys Snell's Law of refraction and hence is called an Ordinary Ray or O-ray. The other ray does not obey Snell's Law and is called an Extraordinary Ray or E-Ray. Both of them are linearly/plane polarised, but plane of polarisation is perpendicular to each other. If one of the rays is eliminated, the light transmitted by the crystal will be a linearly/plane polarized light.
- When a ray of light AB is incident on the calcite crystal making an angle of incidence i, it is refracted along two paths inside the crystal: (i) along BC making an angle of refraction r₂, (ii) along BD making an angle of refraction r1. These two rays emerge out along DO and CE which are parallel as the crystal faces are parallel.

Optic Axis

The Optic Axis is the direction of symmetry of unisotropic media along which double refraction does not take place.

A line drawn through any of the blunt corners making equal angles with each of the three edges gives the direction of the optic axis. In fact any line parallel to this line is also an optic axis. Therefore, optic axis is not a line but It Is a Direction.

Principal Section

A plane containing The Optic Axis and Perpendicular to the Opposite Faces of the crystal is called the Principal Section Of The Crystal. The principal section cuts the surfaces of a calcite crystal in a parallelo-gram with angles 109° and 71°.

Fig. 2.20: Principal section of calcite crystal

Principal Plane

- The plane containing the optic axis and the ordinary ray is called principal plane of the ordinary ray. Similarly the plane containing the optic axis and the extraordinary ray is called the principal plane of the extraordinary ray.
- Experiments revealed that the vibrations of the ordinary rays are perpendicular to the principal section of the crystal while the vibrations of the extraordinary rays are parallel to the principal section of the crystal. Thus, the two rays are plane polarized, their vibrations being at right angles to each other.
- 2.11.4 Polarization by Double Refraction Nicol Prism
- Nicol prism is an optical device used for producing and analysing plane polarised light.

Principle

The Nicol prism is made in such a way that it eliminates one of the refracted rays by total internal reflection i.e. O-ray is eliminated and only E-ray is transmitted through the prism.

Construction

A calcite crystal whose length is three times it's breadth is taken. Let ABCD be the principal section of the crystal with \angle BAD = 71°. The end faces of the crystal are cut in such a way that they make angles 68° and 112° in the principal section instead of 71° and 109°.

NEERING PHYSICS (BATIE

The crystal is then cut into two pieces from one blunt corner to the other along a plane perpendicular to the principal section. The two cut faces are grounded and polished optically flat. It is then cemented together by Canada balsam whose refractive index lies between the refractive indices for the O-ray and E-ray for calcite.

Refractive index of Calcite for O-ray

$$
\mu_{\rm o} = 1.658
$$

Refractive index of Canada balsam

 μ_c = 1.55 Using sodium light of λ

$$
= 5893 A^o
$$

Refractive index of Calcite for E-ray

$$
\mu_{\bullet} = 1.486
$$

Canada balsam layer acts as a rarer medium for O-rav and as a denser medium for E-ray. Except the end faces, the sides of the crystal are blackened.

Working

- \bullet When a ray of unpolarized light is incident on the prism surface, it splits into O-ray and E-ray. Both the rays are polarized having vibrations at right angles to each other.
- When the O-ray passes from a portion of the crystal into the layer of Canada balsam, it passes from a denser medium to rarer medium. When the angle of incidence is greater than the critical angle, the O-ray is totally internally reflected and is not transmitted.
- When the E-ray passes from calcite to the Canada balsam layer, it enters in rarer medium. Therefore, the E-ray is not affected and is transmitted through the prism.

Refractive index for O-ray with respect to Canada balsam.

$$
\mu = \frac{1.658}{1.55}
$$

If C is the critical angle.

$$
\mu = \frac{1}{\sin C}
$$

$$
\sin C = \frac{1}{\mu} = \frac{1.55}{1.658}
$$

$$
C = 69^{\circ}
$$

As the length of the crystal is large, the angle of incidence at Canada balsam surface for the O-ray is greater than the critical angle. Thus, it suffers total internal reflection while E-ray is transmitted which is plane polarized having vibrations in the principal section.

OPTICS, FIBRE OPTICS AND LASER

Special Cases

 (2.21)

÷.

- If the angle of incidence is less than the critical angle for O-ray, it is not reflected and is transmitted through the prism. In this position, both the O-ray and E-ray are transmitted through the prism.
- The E-ray also has a limit beyond which it is totally internally reflected by Canada balsam surface. If E-ray travels along the optic axis, its refractive index is the same as that of O-ray i.e. 1.658. But it is 1.486 for all other directions of E-ray. Therefore depending on the direction of propagation of E-ray, μ , lies between 1.486 and 1.658. Therefore for a particular case, μ_e may be more than 1.55 and the angle of incidence will be more than the critical angle. Then E-ray will also be totally internally reflected.

2.12 HUYGEN'S THEORY OF DOUBLE REFRACTION IDec. 181

Huygen explained the phenomenon of double refraction on the basis of the principle of secondary wavelets. He assumed:

- When a beam of ordinary unpolarized light strikes a ٠ doubly refracting crystal, each point on the surface sends out Two Wavefronts, one for ordinary ray and the other for extraordinary ray.
- The Ordinary-Ray travels with the Same Speed v_c in all directions and the crystal has a single refractive index $\mu_o = \frac{c}{v_o}$ for this wave. Thus, the O-ray has a **Spherical Wavefront.**
- The Speed of Extra-Ordinary Ray V, Varies with **Direction.** So, the refractive index, $\mu_e = \frac{c}{v_e}$ also varies with direction for the E-ray. Therefore, the extraordinary ray develops a wavefront which is Ellipsoidal.

ENGINEERING PHYSICS (BATU)

Fig. 2.22: Double refraction

- The velocity v. measured is perpendicular to the optic axis.
- The velocities of the O-ray and E-ray are the same along the optic axis.
- When rays are incident along the optic axis, the spherical and ellipsoidal wavefronts touch each other at points of intersection with the optic axis and double refraction does not take place.
- If $v_0 > v_0$ or $\mu_0 < \mu_0$, the spherical wavefront lies outside the elliptical wavefront. Such crystals are called Positive Crystals. The examples of positive crystal are quartz, ice etc.
- If $v_e > v_o$ or $\mu_e < \mu_o$, the elliptical wavefront lies outside the spherical wavefront. Such crystals are called Negative Crystals. The examples of negative crystals are calcite, tourmaline, etc.

2.12.1 Positive and Negative Crystals

 (2.22)

OPTICS, FIBRE OPTICS AND LASER

2.13 CASES OF DOUBLE REFRACTION OF CRYSTAL CUT WITH OPTIC AXIS LYING IN THE PLANE OF INCIDENCE

2.13.1 Parallel to the Surface

- Fig. 2.24 shows unpolarized plane wavefront AB incident normally on the crystal surface XY. The optic axis lies along XY and is in the plane of incidence.
- At the points A and B, it develops two wavefronts, one spherical for O-ray and one elliptical for E-ray. The envelope of O-ray and E-ray gives the corresponding wavefront which is plane polarized.
- It should be noted that both O-ray and E-ray are plane \bullet polarized light. Here both O-ray and E-ray travel along the same direction with different velocities. As O-ray and E-ray travel along the same direction with different velocities, a path difference is introduced between them.
- This principle is used in the construction of quarter and half-wave plates.

- Fig. 2.25 shows unpolarized plane wavefront AB incident normally on the crystal surface XY. Optic axis lies in the plane of incidence and perpendicular to the crystal surface.
- As the light is incident in the direction of optic axis, Oray and E-ray travel with the same speed along the optic axis. As a result O-ray and E-ray travel along the same directions with same velocity. Hence the phenomenon of Double Refraction is Absent in this case. Ordinary and extraordinary wavefronts CD and GH coincide at all instants.

- Fig. 2.26 shows an unpolarized plane wavefront incident normally on the crystal surface so that the optic axis makes an angle with the crystal surface.
- . O-ray and E-ray travel with different velocities in different direction in the crystal. Hence double refraction is seen in this case and both O-ray and E-ray are separated by an angle depending upon the distance travelled in crystal.

2.14 LAURENT'S HALF SHADE POLARIMETER 2.14.1 Optical Activity

- When a beam of a plane polarized light is directed along the optic axis of quartz, the plane of polarization turns steadily about the direction of the beam and the beam emerges vibrating in some other plane than that at which it has entered.
- The amount of rotation depends upon the distance travelled in the medium and wavelength of the light. This phenomenon of rotation of the plane of polarization is called Optical Activity. The substances which show optical activity are sodium chlorate, turpentine, sugar crystal etc. Fig. 2.27 shows optical activity.

Fig. 2.27: Optical activity

Some crystals rotate the plane of vibration to the right and some to the left. The substances which rotate to the right are called Right Handed or Dextro-Rotatory and those which rotate to the left are called Left **Handed or Laevo-Rotatory.**

2.14.2 Specific Rotation

A striking feature of optical activity is that different colours are rotated by different amount. This rotation is nearly proportional to the inverse square of the wavelength. This gives a Rotatory Dispersion, violet being rotated nearly four times as much as red light. Fig. 2.28 shows rotatory dispersion.

- \bullet The rotation for a 1 mm thick plate is called the **Specific Rotation.**
- 2.14.3 Optically Active Materials
- Optical activity is exhibited by organic compounds whose molecular arrangement lacks in symmetry. Therefore, upon entering in the material, the plane polarized light changes the plane of polarization depending upon the molecular arrangement of the material.
- \bullet Most of the petroleum exhibits optical activity which are organic in nature. The optical activity is not exhibited by synthetic materials as they are mixture of left handed and right handed molecules in equal quantity, thus giving net zero rotation.

OPTICS. FIBRE OPTICS AND LASER

2.14.4 Laurent's Half Shade Polarimeter

Polarimeters are instruments, used for finding the optical rotation of different solutions. When they are calibrated to read directly the percentage of cane sugar in a solution, they are named as saccharimeters.

 (2.24)

Polarimeters can be used to find the specific rotation of sugar solution or if the specific rotation is known, they can be used to find its concentration.

Construction:

- The essential parts of a polarimeter are as shown in Fig. 2.29. Light from a monochromatioc source S is rendered parallel by a collimating lens L. N₁ and N₂ are two Nicol prisms, N_1 acts as a polarizer while N_2 acts as a analyzer. N₂ is capable of rotation about a common axis of N_1 and N_2 . The rotation of N_2 can be read on a graduated circular scale S.C. The light after passing through the polarizer N₁ becomes plane polarized with its vibrations in the principal plane of the Nicol N1.
- The plane polarized light now passes through a half shade device HS and then through a glass tube BC containing the optically active substance. The tube is closed at the end by metal covers. The light emergent from the analyzer N_2 is viewed through a telescope T. The telescope is focused on the half shade.

Fig. 2.29 : Laurent's half shade polarimeter

Action of Half Shade

- When an optically active substance is placed in between two crossed Nicols, the field of view is not dark. In order to make it dark the analyzer is rotated. It is observed that, when the analyzer is rotated, the field of view is not dark for a considerable region. Hence the measurement of optical is not accurate. To avoid this difficulty, a half-shade device is used. Laurent's halfshade plate consists of a semi-circular half wave plate ACB of quartz.
- The thickness of the quartz is so chosen that it introduces a phase difference of π between the ordinary and extraordinary ray passing through it. The other half ADB is made of glass and its thickness is

such that is absorbs and transmits the same amount of light as done by the quartz half-plate. The two plates are cemented along the diameter AB. The optic axis of the quarts plate lies along the line AB.

Fig. 2.30 : Laurent's half shade plate

- Let the plane polarized light coming from the polarizer be incident normally on the half shade the plate with its vibrations parallel to OP. Here OP makes an angle 8 with AB. The vibrations emerge from glass plate along the plane OP. Inside the quartz plate, the incident ray would be split up into two ordinary and extraordinary components. One having vibrations along OA and the other along OD. These rays travel with unequal velocities through the quartz plate which introduces a phase difference of π between them.
- Hence on emerging from the plate, the vibrations will be along OA and PC and their resultant vibrations along OQ, where \angle AOOP = \angle AOQ. If the initial position of ordinary components is represented by OD then the final position is represented by OC. If the principal plane of the analyzing Nicol is parallel to OP, then the light emerging from glass portion will pass unobstructed while light from quartz will be partly obstructed
- Due to this fact, the glass half will appear brighter then the quartz half. On the other hand, if the principal plane of the analyzer is parallel to OO, the light from quartz portion will be unobstructed while light from glass will be partly obstructed.
- Thus, the quartz half will appear brighter than the glass half. The two halves will look equally illuminated when the analyzer is so turned that its principal plane is exactly parallel to AB. Any slight rotation in either direction produces a sharp difference in the illumination of the two halves.

.in

l.in

ENGINEERING PHYSICS (BATU)

Determination of Specific Rotation

- Specific rotation S is given by
	- $S = \frac{\theta}{l \times c}$

where θ is the angle of rotation in degrees, l , is the length of the solution in decimeters and c is the concentration of solution in gm/cc. Hence, to determine the specific rotation of a substance, a solution of known concentration is prepared. The length of the solution is measured directly. The value of θ is determined as follows :

 (2.25)

- The experimental tube is filled with distilled water and placed in its position. The telescope is focused on the half-shade plane and the analyzer is rotated till equally bright position is observed in the field of view
- The readings of two verniers on the circular scale is noted. Now, the tube is filled with the optically active solution and placed in its position. The analyzer is rotated and is brought to a position so that the whole field of view is equally bright. The new positions of the two verniers are again noted on the circular scale.
- The difference in the two readings of the same vernier gives the angle of rotation, 0 produced by the solution. Thus knowing 0, I and c the specific rotation S can be calculated by the given formula.

Problem 2.36: Two polarizing plates have polarizing directions parallel so as to transmit maximum intensity of light. Through what angle must either plate be turned if the intensity of the transmitted beam is to drop to one third ?

$$
1 = \frac{I_0}{3}
$$

Formula: From Law of Malus, I = $I_0 \cos^2 \theta$ Solution:

Substituting, $\frac{I_0}{3} = I_0 \cos^2 \theta$ $\cos^2 \theta = \frac{1}{3}$ $\cos \theta = \pm \frac{1}{\sqrt{2}}$ Or $\theta = 54^{\circ} 41'$ or $\pm 144^{\circ} 40'$

Problem 2.37: At a certain temperature, the critical angle of incidence of water for total internal reflection is 48° for a certain wavelength. What is the polarizing angle and the angle of refraction for light incident on the water that gives maximum polarization of the reflected light?

OPTICS, FIBRE OPTICS AND LASER **Data:** Critical angle $C = 48^\circ$ **Formulae:** (i) $\mu = \frac{1}{\sin 6}$, (ii) $\mu = \tan i_p$ **Solution:** (i) Substituting, $\mu = \frac{1}{\sin 48^\circ}$ $\mu = 1.345$ (ii) From Brewster's law, $\mu = \tan i_{p}$ 1.345 = tan i_p i_p = tan⁻¹ (1.345) $i_p = 53^{\circ} 22^{\circ}$ $i_p + r = 90^{\circ}$ But $r = 90^{\circ} - i_{\circ}$ $\ddot{\cdot}$ $90^{\circ} - 53^{\circ} 22' = r$ $r = 36^{\circ} 38$ $\ddot{\cdot}$ Problem 2.38: Two Nicol prisms are oriented with their principal planes making an angle of 60⁰. What percentage of incident unpolarized light will pass through the system?

 $\theta = 60^{\circ}$ Data: Formulae: (i) For unpolarized light, $I = \frac{I_0}{2}$ (ii) For plane polarized light, $I_T = I \cos^2 \theta = \frac{I_0}{2} \cos^2 \theta$ $I_T = \frac{I_0}{2} \cos^2 60^\circ$ Solution: $I_T = 0.125 I_0$.. The percentage of incident unpolarized light transmitted through the system is % $I_T = 0.125 \times 100$ % $I_T = 12.5%$ Problem 2.39: A polarizer and an analyzer are oriented so that the amount of light transmitted is maximum. How can the analyzer be oriented so that the transmitted light is reduced to (1) 0.75, (2) 0.25 ? Data: (1) I = 0.75 I_0 , (2) I = 0.25 I_0

Formula: $I = L \cos^2 \theta$

l.in

OPTICS, FIBRE OPTICS AND LASER

ENGINEERING PHYSICS (BATU)

Solution: Substituting 0.75 $I_0 = I_0 \cos^2 \theta$ $\frac{3}{4}$ = $\cos^2 \theta$ $\pm \frac{\sqrt{3}}{2}$ = cos θ $\theta = \pm 30^{\circ}$, $\pm 120^{\circ}$ Ã. $0.25 I_0 = I_0 \cos^2 \theta$ $\frac{1}{4}$ = $\cos^2 \theta$ $\pm \frac{1}{2}$ = cos θ $\theta = \pm 60^{\circ}, \pm 150^{\circ}$ Ú.

Problem 2.40: A polarizer and an anlayzer are oriented so that the maximum of light is transmitted. To what fraction of its maximum value and intensity of transmitted light reduced when the analyzer is rotated through (i) 30°, (ii) 45° and $(iii) 60°?$

Solution: Law of Malus:

 $1 = I_m \cos^2 \theta$ $\therefore \frac{1}{I_m} = \cos^2 \theta$ $\frac{1}{I_{\text{m}}}$ = (cos² 30^o) = 0.75 (i) $\theta = 30^{\circ}$, $\frac{1}{L}$ = (cos² 45°) = 0.50 $\theta = 45^\circ$; (ii) $\frac{1}{\text{L}}$ = (cos² 60°) = 0.25 $\theta = 60^\circ$, (iii)

Problem 2.41: Find the specific rotation of cane sugar solution. If the plane of polarization is turned through 26.4°, the length of the tube containing 20% sugar solution is 20 cm.

 (2.26)

Problem 2.42: If the plane of vibration of incident beam makes an angle of 30° with the optic axis, compare the intensities of the extra-ordinary and ordinary light. [Hint: Amplitude of E-ray = A cos θ , Amplitude of O-ray = A sin Ø. Solution: We know. $I \propto A^2$ and according to law of Malus, $I \propto \cos^2 \theta$

 I_E = $A^2 \cos^2 \theta = A^2 \cos^2 30^\circ = 0.75 A^2$ For E-ray: I_{\odot} = A² sin² θ = A² sin² 30° = 0.25 A² For O-ray: $\frac{I_E}{I_O} = \frac{0.75}{0.25} = 3$ \hat{G} $I_E = 3I_O$

Problem 2.43: A 20 cm long tube containing 48 c.c. of sugar solution rotates the plane of polarization by 11". If the
specific rotation of sugar is 66°, calculate the mass of sugar in the solution.

 $l = 20$ cm Data: $s = 66^{\circ}$ $\theta = 11^{\circ}$ Formula: Specific rotation $s = \frac{100}{l \times c}$ $c = \frac{100}{l \times s}$ i. c = $\frac{10 \times 11}{20 \times 66}$ = $\frac{1}{12}$ gm/cc Solution: :. 1 c.c. of sugar solution contains 1/12 gm of sugar. :. 48 c.c. of sugar solution will contain,

 $\frac{1}{12} \times 48 = 4 \text{ gm}$

Problem 2.44: At what angle of incidence should a beam of sodium light be directed upon the surface of diamond crystal to produce complete polarized light (Data Given: Critical angle for diamond = 24.59)

 (2.27)

OPTICS, FIBRE OPTICS AND LASER

- Problem 2.45: A 20 cm long tube containing 48 c.c. of sugar solution rotates the plane of polarization by 11°. If the specific rotation of sugar is 66", calculate the mass of sugar in the solution. $l = 20$ cm Data:
- $s = 66^{\circ}$ $\theta = 11^{\circ}$ Formula: Specific rotation
	- $s = \frac{100}{l \times c}$ $c = \frac{100}{l \times s}$ $\ddot{}$

 $c = \frac{10 \times 11}{20 \times 66} = \frac{1}{12}$ gm/cc **Solution:**

.. 1 c.c. of sugar solution contains 1/12 gm of sugar. :. 48 c.c. of sugar solution will contain,

$$
\frac{1}{12} \times 48 = 4 \text{ gm}
$$

Problem 2.46: At what angle of incidence should a beam of sodium light be directed upon the surface of diamond crystal to produce complete polarized light

(Data Given: Critical angle for diamond = 24.5) $I_c = 24.5^{\circ}$ Data: $\mu = \frac{1}{\sin k}$ Formula: (i) (ii) μ = tani_p Solution: (i) $\mu = \frac{1}{\sin 24.5}$ $\mu = 2.41$ (n) $i_p = \tan^{-1}(2.41)$ $i_n = 67^{\circ}28$

2.15 INTRODUCTION TO LASER

- The term laser stands for Light Amplification by **Stimulated Emission of Radiation.**
- Laser is a light source which is highly coherent i.e. radiation emitted by all the emitters (atoms or molecules) in source agree in phase, direction of emission, polarisation and are essentially of one wavelength or colour (monochromatic).
- Due to coherence, a beam of laser light can travel many miles with only a negligible divergence. This makes it different from the conventional light sources which emit many wavelengths with phase and direction widely varying.
- Around 1917, Einstein first predicted the existence of two different kinds of processes by which an atom can emit radiation by (i) Spontaneous emission, (ii) Stimulated emission.
- In a laser, the process of stimulated emission is used for amplifying the light waves. The fact that stimulated emission process could be used in the construction of coherent optical sources was first put forward by **Townes and Schawlow.**
- The energy of an atom in any atomic system can change by
	- \triangleright Absorption

٠

- Spontaneous emission ъ
- Stimulated emission. \blacktriangleright

2.16 PRINCIPLE OF LASER

Fig. 2.31: Stimulated emission

- Consider Fig. 2.31 where the electrons are initially in \bullet the excited energy level and emission is stimulated before the spontaneous emission occurs. The excited atom is stimulated by a photon of exactly the same energy as the photon to be emitted. In such a case, two photons are emitted, one by the stimulated emission and the other stimulating photon.
- Both the photons travel in the same direction, have the ۰ same frequency and are in phase i.e. they are coherent.
- The emission of two photons with an input of only one photon implies amplification. The occurrence of spontaneous emission is directly proportional to the number of atoms in the specified energy level, whereas in stimulated emission, the rate of occurrence is proportional not only to the number of atoms in the excited state but also to the number of incident stimulating photons.

ENGINEERING PHYSICS (BATU) (2.28) OPTICS. FIBRE OPTICS AND LASER

- 2.16.2 Population Inversion [Dec. 17] The process of getting a large percentage of atoms into an excited state is called as Population Inversion. If a large number of atoms can be excited to upper energy levels, then the probability of stimulated emission and hence light amplification becomes greater.
- The states of the system, in which the population of the higher energy state is more than the population of the lower energy state, are called as Negative Temperature States (negative indicates a nonequilibrium state, not the physical state of the system).
- In any atomic system, the number of particles in a higher energy state is normally less than the number of particles in a lower energy state. If N_2 denotes the number of particles in higher energy level E_2 , and N_1 denotes the number of particles in lower energy level E_1 , then N_2 < N_1 i.e. the population of higher energy level is less than the population of lower energy level. This means that under normal conditions, the ground state E₁ is heavily populated than the excited state E₂.
- If photons of energy $hv = E_3 E_1$ are incident on the atoms, a few of the incident photons get absorbed and some of the atoms get excited to the state E₂. This process of stimulated absorption depopulates level E1. The rate at which this process occurs is expressed as

 $R_{12} = P_a N_1$ (2.55)

where P_a is the probability of stimulated absorption and N_1 is the population of state E_1 .

Similarly, the stimulated emission depopulates energy level E₂ resulting in the emission of photons. The rate at which this process occurs is expressed as

> \dots (2.56) $R_{21} = P_e N_2$

where P_e is the probability of the process of stimulated emission and N_2 is the population of state E_2 .

At thermal equilibrium, these probabilities are equal i.e. $P_a = P_a$. Then, on comparing the two rates, it is observed that more energy is absorbed than emitted. i.e. from (2.55) and (2.56),

 P_a N_1 > P_e N_2 because N_1 > N_2 . $^{\bullet}$ $E - 2$ $N_1 > N_2$ $N_2 > N$ (a) At equilibrium (b) Population inversion Fig. 2.32

- \bullet To produce more emission, it is essential to have N₂ > N₁ i.e. the number of particles in higher energy level must be made more than the number of particles in lower energy level. This is called as Population Inversion.
- If this inversion is achieved, there can be more emission \bullet and incoming light will be amplified coherently. A system in which population inversion is achieved is called an Active System.
- The method of raising atoms from lower energy levels to higher energy levels is called as Pumping. It can be done by subjecting the atoms to a non-uniform electric field, flooding the gas with high intensity light, etc. A more common method of pumping is Optical **Pumping.**

2.16.3 Metastable State

- The electron in an excited state has certain probability to decay or jump to a lower energy level. Generally, these probabilities are such that the jump occurs within 10^{-8} sec of excitation.
- However, there are some excited states, called Metastable States, which have a very low probability of decay i.e. electrons stay for longer time.
- Electrons may stay in the metastable excited states for seconds, minutes or even hours. In stimulated emission, the electrons must remain in excited level and wait for stimulating photon.
- Therefore, the active medium must have a metastable state. The population inversion can be obtained by using metastable states as the electrons rest in metastable state for long time.

2.16.4 Active Medium

A medium in which the population inversion takes \cdot place is called the Active Medium. The active medium is responsible for the light amplification and hence LASER. The active medium may be a solid, liquid or gas and accordingly the lasers are classified as solid state or gas lasers.

Out of the total active medium, only small number of atoms are responsible for lasing action and remaining atoms help only in hosting active atoms or in population inversion. The atoms which particulate in stimulated emission are called Active Centres.

.in

(2.29)

.

.

.

OPTICS, FIBRE OPTICS AND LASER

2.16.5 Resonant Cavity A cavity can be constructed using mirrors such that the light rays return to their original position after travelling through the cavity for a certain number of times. Such cavities are known as Resonant Cavities.

Fig. 2.33 shows cavity formed by two parallel mirrors M₁ and M₂. One of the mirrors is completely silvered (M₁) and the other is partially silvered (M₂). The laser beam emerges from the resonant cavity through the partially silvered mirror M2.

Fig. 2.33: Resonant cavity

The active system is placed in the resonant cavity, the photon emitted will keep on reflecting back and forth within the cavity. The light which is incident parallel to the axis of optical cavity will only leak out as a laser. That is why, laser is highly directional.

2.16.6 Pumping

The method of raising atoms from lower energy levels to higher energy levels is called as Pumping. The pumping is used for achieving population inversion which is necessary for optical amplification to take place. There are several methods for pumping electrons. They are as follows:

1. Optical Pumping

In optical pumping, an external light source (flash lamp) is used to produce a high population in some particular energy level E_2 (say) by selective absorption as shown in Fig. 2.34.

Fig. 2.34: Optical pumping

When a flash of light falls on electrons in ground state, they absorb incident photons and get excited. After staying there for some time, some of the atoms make spontaneous transition to metastable state E₁. As the probability of spontaneous decay is less in metastable results in a population inversion between E_n and E₁.

Generally, this method is used in solid-state lasers, such as ruby laser.

Inelastic Atom-Atom Collisions $\overline{2}$.

Here suitable mixtures of gases are used. The gases are selected in such a way that their excited states are almost same. This makes the energy exchange possible between the atoms of the gases. If two gases A and B have same excited state, A* and B* then,

- The atom of gas A is excited by electric discharge. In collision with B, the energy is transferred to B. As a result, the excited level of atom B becomes more populated than lower level to which B can decay, as shown in Fig. 2.35.
- The best example is the He-Ne gas laser.

3. Forward Biasing of a p-n Junction

If a p-n junction is formed with degenerate (heavily ۰. doped) semiconductors, the bands under forward bias appear as shown in Fig. 2.36.

Fig. 2.36: Forward biasing of a p-n junction diode

If the bias voltage is large enough, electrons and holes are injected into the active region. As a result, the depletion layer now contains a large number of

.in

.in

ENGINEERING PHYSICS (BATU)

$(2, 30)$

electrons in conduction band and holes in valence band. If the population density is high enough, it gives population inversion. For a population inversion, the applied voltage should be selected in such a way that $eV > h v (= E_0)$.

The other methods of pumping are electron excitation, chemical reactions, etc. These methods will not be discussed in detail as they are beyond the scope of the text.

2.17 EINSTEIN'S COEFFICIENTS

Consider an assembly of atoms at thermal equilibrium. The system is at temperature T with radiation of frequency v and energy density I_u (or photon density). Let N₁ and N₂ be the number of atoms in energy states E_1 and E_2 respectively at any time t.

The rate of transition from E_1 to E_2 will depend on the properties of energy states E₁ and E₂ and is proportional to the energy density I_v of the radiation of frequency v and the number of electrons N_1 in energy state E_1 .

Therefore,
$$
R_{12} \approx N_1 I_v
$$

 \dots (2.57) $R_{12} = B_{12} N_1 I_0$ or where B_{12} is the proportionality constant called Einstein's

Coefficient for Absorption.

The electron in the excited level will make transition to a lower energy state either by spontaneous or stimulated emission.

In spontaneous emission, the rate of emission is proportional to the number of excited electron N₂.

- i.e. $(R_{21})_{\text{spont}} \propto N_2$
- $(R_{21})_{\text{spont}} = A_{21} N_2$ $\mathbb{Z}^{\mathbb{Z}}$

where A_{21} is called the Einstein's coefficient of spontaneous emission.

 \dots (2.58)

But in stimulated emission the rate of emission will depend upon number of excited electron N₂ and intensity of the stimulating photons I_v.

$$
\therefore (R_{21})_{\text{symulated}} \approx N_2 I_{\text{u}}
$$
\n
$$
\text{or } (R_{21})_{\text{symulated}} = B_{21} N_2 I_{\text{u}}
$$
\n
$$
\dots (2.59)
$$

where B_{21} is called the Einstein's coefficient of stimulated emission.

At equilibrium the rate of absorption and emission is same.

OPTICS, FIBRE OPTICS AND LASER

$$
I_{\text{u}}\left(N_{1} B_{12} - N_{2} B_{21}\right) = A_{21} N_{2}
$$
\n
$$
I_{\text{u}} = \frac{A_{21} N_{2}}{N_{1} B_{12} - N_{2} B_{21}} \qquad \qquad \dots (2.61)
$$

Dividing by N₂ B₂₁,

$$
I_{\upsilon} = \frac{A_{21}/B_{21}}{\left(\frac{N_1}{N_2}B_{22} - 1\right)} \qquad \qquad \dots (2.62)
$$

From Boltzmann distribution law,

But
$$
E_2 - E_1 = h\nu
$$

$$
\therefore \frac{M_1}{N_2} = e^{im/kT} \qquad \qquad \dots (2.65)
$$

Substituting in equation (2.62).

 A_{∞}/R

$$
I_{\nu} = \frac{P_{\nu 2} P_{21}}{\left(\frac{B_{12}}{B_{21}} e^{h_{\nu} kT} - 1\right)} \qquad \qquad \dots (2.66)
$$

The Planck's radiation formula is given by

$$
I_{\nu} = \frac{8\pi h \nu^3}{c^3} \left(\frac{1}{e^{h \omega/RT} - 1} \right) \qquad \qquad \dots (2.67)
$$

Comparing equations (2.66) and (2.67), we have

$$
B_{12}/B_{21} = 1 \quad \text{i.e.} \quad B_{12} = B_{21} \quad \text{... (2.68)}
$$
\nand\n
$$
\frac{A_{21}}{B_{21}} = \frac{8\pi \text{ h}v^3}{c^3} \quad \text{... (2.69)}
$$

The equations (2.68) and (2.69) are called Einstein's Relations. The ratio of spontaneous to stimulated emission is proportional to v^3 .

From equations (2.58) and (2.59), the ratio of spontaneous emission to stimulated emission is

$$
R = \frac{A_{21} N_2}{B_{21} N_2 I_0} = \frac{A_{21}}{B_{21} I_0} \qquad \qquad \dots (2.70)
$$

Using equations (10) and (14)

R₂₁)_{kinrulated} ... (2.60)
and (2.59),

$$
R = \frac{A_{21}/B_{21}}{A_{21}/B_{21}} (e^{b_1 x / kT} - 1)
$$

∴
$$
R = e^{b_0/kT} - 1
$$
 ... (2.71)

l.in

 (2.31)

(a) Two level.

(b) Three level.

ENGINEERING PHYSICS (BATU)

-
- (c) Four level.

(a) Two Level Laser System

A two-level laser system consists of only two energy levels, E_1 and E_2 , ground state and excited state. The electrons from E_1 are pumped to E_2 as shown in Fig. 2.37. E.

Fig. 2.37: Two-level laser system

The electron from E_2 decays to E_1 radiating a photon of energy hv. The best example of two-level laser system is a diode laser.

(b) Three Level Laser System

- . In a three-level laser system, three energy levels E_1 , E_2 and E₃ are involved as shown in Fig. 2.38. Here one of the transitions is non-radiative. The transition between E_3 to E_2 is very fast and non-radiative.
- Here the electron is pumped to E₃ directly. As decay from E_3 to E_2 is very fast, hence E_2 will be more populated and decay from E₂ to E₁ gives a photon of energy hu. The best example of this category is ruby laser.

pumped etween E. ese three vo will be

OPTICS, FIBRE OPTICS AND LASER

- The best er system. $nd E₂$
- between E_2 to E_1 is non-radiative and spontaneous. Moment electron reaches to E₁, it is pumped to level E₄, but due to short life time of energy level E₄, electron immediately jumps to E_3 . Hence the levels E_1 and E_4 are free to accommodate electrons and the population of E_3 is always higher which favours for lasing action. Therefore, four level laser system works effectively.

Fig. 2.39: Four-level laser system

Need of Three/Four-Level System

- . If there are only two states, ground state and metastable state. When a photon is incident on it, it will be absorbed and electron will jump from ground state to metastable state. At the same time, due to stimulated emission, electron will jump to the ground state
- 隆 During the process a situation will arise when half of the atoms are in the ground state (N₁) and half in the metastable state (N₂), i.e. $N_1 = N_2$. This will make the rate of stimulated emission and absorption equal. But to achieve population inversion, rate of absorption should be higher than stimulated emission.
- Thus if there are only two states the population \bullet inversion could not be achieved. And, therefore, laser action will not be possible.

 (2.32)

A ruby laser is a solid-state laser that uses a synthetic ruby crystal. Typical ruby laser is a pulsed laser of intense red colour.

Construction

The laser consists of a ruby rod surrounded by a flash tube. One end of the rod is highly silvered while the other end is semi-silvered. The flash tube surrounds the ruby rod in the form of a spiral.

- Synthetic ruby consists of a crystal of aluminum oxide (Al_2O_3) in which a few of the aluminum atoms (Al^3) are replaced by chromium atoms (Cr¹⁺). These atoms have the property of absorbing green light.
- The chromium impurity is the active atom of the laser. Doping of chromium gives ruby its characteristic red colour.

(a) Pumping and Energy Levels of Chromium

- When ruby is in a steady magnetic field, chromium acquires energy states, of which three are represented schematically as shown in Fig. 2.41 (a).
- As is clear from the figure, this is a three-level laser ٠ system. Level M actually consists of a pair of levels corresponding to wavelengths of 6943 A° and 6929 A°. However, laser action takes place only on 6943 A° line due to higher population inversion.
- The pumping of chromium atoms is performed with a Xenon or Krypton flash lamp. The chromium atoms in the ground state absorb radiation around wavelengths 5500 A° and 4000 A° and are excited to the levels marked E₁ and E₂.

(b) Assembly of Chromium Atoms to Metastable State

The chromium atoms excited to these levels, relax rapidly through a non-radiative transition (in a time 10⁻⁶ to 10⁻⁹ sec) to the metastable state M, which has a life time of ~3 m secs. Laser emission occurs between level M and the ground state G at an output wavelength of 6943 A*.

(c) Operation

- The operational sequence starts with the ignition of the Xenon flash tube. Chromium atoms in the ruby rod are energized by absorption of the energetic photons from the flash tube.
- When the excited electrons in the chromium atoms fall back to their normal states, photons are given off by spontaneous emission emitting red light (hence ruby has a natural red colour). Some of these photons escape from the rod but many oscillate or bounce back and forth along the length of the rod with the help of the mirror at the two ends.
- When the electrons in the excited state are exposed to these radiations of the same frequency which they are about to emit, the emission process is triggered. Radiation is now emitted, which is exactly in phase with the exposed radiation.
- This cumulative process of flash tube photons exciting chromium atoms which in turn emit photons in the same direction and phase, continues until the coherent laser beam penetrates through the partially reflecting mirror on one end of the rod to give a powerful beam of red light.

OPTICS. FIBRE OPTICS AND LASER

.in

- (d) Pulsed Output
- A certain stage is reached when the population inversion caused by one flash of Xenon tube is used up. As soon as the flash lamp stops operating, the population of the upper level is depleted very rapidly and laser action ceases until the arrival of the next flash. Refer Fig. 2.41 (b).
- Thus, ruby is a Pulsed Laser. The output beam has a principal wavelength of 6943 A° equal to 4.3×10^{14} Hz frequency (lies in the visible spectrum). The duration of the output flash is about 300 µsec.
- During the operation of a ruby laser, a very high temperature is produced. To prevent any damage to the ruby rod, it is surrounded by a liquid nitrogen container and is operated to give out the beam only in pulses.
- This laser is used in many applications as its output lies in the visible region where photographic emulsions and photo detectors are more sensitive than they are in the infrared region. Ruby lasers also find application in laser holography, laser ranging, etc.

2.20 HELIUM-NEON LASER - FOUR LEVEL **LASER SYSTEM** [May 18]

- This is a 'Continuous Laser' unlike the ruby laser. In this laser, the vapours of metal are used as the media.
- It is an extremely popular form of laser as it is simple, inexpensive and has an extremely broad range of emission wavelengths (0.6 to 100 um depending on the type of gas used). The first gas laser to be operated successfully was the He - Ne laser.
- . In solid-state lasers, pumping is usually done by using a flash lamp or a continuous high power lamp. Such a technique is efficient if the laser system has broad absorption bands. In gas lasers, as the atoms are characterized by sharp energy levels, an electrical discharge is generally used to pump the atoms.

Construction

- It consists of a quartz tube with a diameter of about 2-8 mm and a length of 10-100 cm. It is filled with helium and neon. The pressure of helium is approximately 10 times that of neon.
- The neon atoms provide energy states for the transitions while helium provides a mechanism for efficiently exciting neon atoms to upper metastable states i.e. helium serves merely as an energy transfer agent

High frequency
generator

At one end of the tube is a total reflector while at the

Principle

 (2.33)

In He-Ne laser, population inversion is produced through inelastic collisions between excited He atoms and Ne atoms in the ground state. The process can be expressed as

Fig. 2.42: He-ne laser

- $He^* + Ne \rightarrow He + Ne^*$ (* shows an excited state)
- This is possible, because the levels Ne₄ and Ne₆ of neon ä. atoms have almost the same energy as the levels $He₂$ and He₃ of helium atoms as shown in the energy level diagram.

Working

(a) Electric Discharge and Excitation of Helium

- When an electrical discharge is passed through the gas, the electrons which are accelerated down the tube collide with helium and neon atoms and excite them to higher energy levels.
- The helium atoms tend to accumulate at the levels Heand He₃ due to their long life times of = 10^{-4} secs and 10⁻⁶ secs respectively.
- (b) Transfer of Energy from Helium to Neon and Pumping
- As the levels Ne₄ and Ne₆ of neon atoms have almost the same energy as He₂ and He₃, excited helium atoms colliding with neon atoms in the ground state can excite the neon atoms to Ne, and Ne, states.
- As the pressure of helium is ten times that of neon, the levels Ne4 and Ne6 of neon are selectively populated as compared to other levels of neon.

i.e. $He^* + Ne \rightarrow He + Ne^*$ (* indicates excited state)

Fig. 2.43

(c) Population Inversion for Neon

- Transition between Ne₆ and Ne₃ produces the popular 6328 A° (632.8 nm) line of He - Ne laser. Neon atoms de-excite through spontaneous emission from Ne3 to Ne₂ (life time $\sim 10^{-8}$ sec.). As this time is shorter than the life time of level Ne₆ (~10⁻⁷ sec.), steady state population inversion can be achieved between Nes and Ne₃. Level Ne₂ is metastable and thus tends to collect atoms
- The atoms from this level fall back to the ground level mainly through collisions with the walls of the tube. As Ne₂ is metastable, it is possible for the atoms in this level to absorb the spontaneously emitted radiation in $Ne_3 \rightarrow Ne_2$ transition to be re-excited to Ne3. This tends to reduce the effect of inversion
- It is for this reason that the gain in this laser transition is found to increase with decreasing tube diameter.

(d) Transition within Neon and Continuous Output

- The other two important wavelengths from the He Ne laser correspond to the Ne \rightarrow Ne \cdot (1.15 um) and Ne_s \rightarrow Ne_s (3.39 µm) transitions. The laser can be made to oscillate at 6328 A* by using optical elements (multilayer coated mirrors) in the path. These lasers are continuous, because the collision process maintains the energy states Ne₆ and Ne₄ at larger population densities than the lower states. This continued population inversion gives a continuous lasing action.
- A typical He Ne laser operates with a current of 10 mA at a D.C. voltage of 2500 V and gives an optical 5×10 output of 5 mW. Its efficiency is then $\frac{100+10}{2500 \times 10^{-2}}$ $= 0.02%$
- This is the only laser radiating in far infrared region. Hence, mostly used in laser 'Raman Spectroscopy'.

2.21 APPLICATIONS OF LASER

2.21.1 Applications of Laser in Industry

 (2.34)

- Laser can be focused to a very high energy density into a small image (= 1 micron in diameter) with the help of suitable lenses. Due to the small size of the image and the control over the energy, lasers are used extensively for cutting, welding and drilling circuits.
- Drilling: A laser beam is also used to drill holes of micron dimensions on printed circuit boards (PCBs). It is also used in resistance trimming in electric components industries. One can drill holes of the diameter of 10 um through very hard substances like diamond. YAG laser is found to be very useful in such applications.
- Welding: Lasers are used as a heat source in welding the joints of the metals. This type of precise welding is extremely important in micro-electronics in which thin films are used. Thermocouple wires can easily be welded with the help of high power laser beam.
- Micromachining: Lasers are used for machining a surface in a slow and accurate manner to achieve an extraordinarily smooth finish.
- Cutting: Another important industrial application is ٠. metal or fabric cutting. A finely focused laser beam can cut thick and hard metal sheets with high precision and accuracy. It is also used in tailoring industries to cut thousands of layers of cloth at one instant.
- Due to its intensity and directionality, laser is used in surveying. When tunnels are to be constructed, engineers use the laser beam as a reference, to check that it is being constructed along a straight line. Similarly, it can be used to dig a ditch to a certain prescribed depth. Its most interesting use in surveying has been in measuring the distance from the earth to the moon. This distance was measured to an accuracy of 600 ft, and with the aid of reflectors to within six inches. This accuracy will allow to determine the location of the north pole to within six inches. It is further believed that a laser could be used to check whether the gravitational constant is actually a constant.
- A laser beam can determine precisely the distance, velocity and direction as well as the size and form of distant objects by means of the reflected signal as in radar. A Lidar (Laser radar), which sends out beams of laser light and detects echoes even from atmospheric layers has been developed.

OPTICS. FIBRE OPTICS AND LASER

.in

2.21.2 Applications of Laser in Medicine

- Bloodless cancer surgeries can be performed as the beam can be focused on a small area, so that only the harmful tissue can be destroyed without damaging the surrounding region.
- Laser has been successfully used in ophthalmology, in the treatment of detached retinas, in welding cornea. etc. At the command of the physician, laser produces a beam of light which is directed onto the eye under treatment, to produce a minute coagulation. A series of these lesions weld the detached retina.
- Laser is used as a tool in the study of genetics. Lasers have been built into or are devised to be attached to microscopes. As high density energy is achieved, it can be used in micro-surgery, micro-burning, etc. Such a microscopic laser can concentrate millions of watts of power per square millimeter into a selected area. For example, a focused microscope laser can be used to make tiny openings (of 25 μ in diameter) in the cell walls, of say the nervous system, heart, retina, etc. without causing irreversible damage.
- Laser microprobes can be used as dental drills giving an advantage of no heating, no anesthetic and no pain to the patient. They have also been successfully used for localized treatment of skin growths and blemishes in human beings. A large amount of energy can be transmitted through the skin to interact with deeper different biological materials or structures which are damaged.

2.21.3 Application of Laser in Communication

- In this technology, optical energy is transferred through a guided media, called the Glass Fibre. When a beam of light enters at one end of a transparent rod (glass rod say), the light beam is totally internally reflected and gets trapped within the rod.
- A similar behaviour is exhibited by a bundle of fine fibres. A beam enters at one end and is transmitted through the wire to the other end, even when the fibre is curved.
- One of the most important areas of application of fibre optics is in telecommunication. The communication kit consists of a transmitter, optical fibre and the receiver. The block diagram is as shown in Fig. 2.44.

OPTICS, FIBRE OPTICS AND LASER

- The transmitter consists of a light source, either LED or laser diode, with a signal. The light beam from the source is connected to the fibre, through optical connections
- The carrier and signal frequency propagate through the fibre.
- At the other end, it is detected with the help of a photodetector. The received signal is demodulated and the information is stored or displayed by electronic circuits

2.21.4 Application in Information Technology (Holography)

Holography

 (2.35)

- This is a technique of producing an interference pattern between a direct laser beam and a laser beam reflected from an object on a photographic plate. This pattern on the developed photographic plate, when illuminated with laser in a proper manner, produces a three-dimensional image of the object called a 'Hologram'.
- Holography deals with three-dimensional image of the object whereas photography is a two-dimensional effect. In photography, the photographic plate records only the intensity of light due to the image formed on it. In holography, both the intensity and phase distribution are recorded simultaneously using interference technique. Due to this the image produced by the technique of holography has a true threedimensional form and is as true as the object

2.22 OPTICAL FIBRE

2.22.1 Principle of Optical Fibre

Optical fibre is a very thin and flexible medium having a cylindrical shape consisting of three sections: (i) The core, (ii) The cladding and (iii) The outer jacket.

Principle of Light Transmission

- The principle of light transmission through optical fibre is total internal reflection. For total internal reflection to take place at the fibre wall, the following conditions should be satisfied:
	- The refractive index of the core material (μ_1) must 'n. be greater than that of the cladding (μ_2) .

ENGINEERING PHYSICS (BATU)

 \geq At the core-cladding interface, the angle of incidence 0 must be greater than the critical angle,

 (2.36)

where $\theta_c = \sin^{-1} \left(\frac{\mu_2}{\mu_1} \right)$

- When a light ray travels from a denser to a rarer medium, the angle of refraction is greater than the angle of incidence. As the angle of incidence increases, the angle of refraction also increases and for a particular angle of incidence, the refracted ray grazes the interface between the core and the cladding. This angle of incidence is called as the Critical Angle 8.
- If angle of incidence is greater than θ_o the ray will be reflected back into the core, i.e. it suffers Total Internal Reflection. For angles equal to or greater than the critical angle the light will be totally reflected and no light will be refracted. Fig. 2.45 shows total internal reflection.
- When light is incident on core of the fibre optics, it will be refracted and will travel in the core. After some time it will strike one of the core-cladding interface say upper surface. If the angle of incidence is greater than critical angle, it will be totally reflected and remain in the core.
- Now, the reflected light will travel to the lower surface. It is then incident on the lower surface where the same process is repeated and light gets transmitted from one end to the other end as shown in Fig. 2.45.

OPTICS, FIBRE OPTICS AND LASER

2.22.2 Application of Fibre Optics in **Communication Kit** One of the most important areas of application of fibre

optics is in telecommunication. The communication kit consists of a transmitter, optical fibre and the receiver. The block diagram is as shown in Fig. 2.47.

Fig. 2.47: Communication kit

- The transmitter consists of a light source, either LED or laser diode, with a signal. The light beam from the source is connected to the fibre, through optical connections.
- The carrier and signal frequency propagate through the fibre.
- At the other end, it is detected with the help of a photodetector. The received signal is demodulated and the information is stored or displayed by electronic circuits.

2.22.3 Introduction to Optical Fibre

- Efforts to device communication systems for sending from one place to another distant place have been continuing by the human being. These systems have used as optical or acoustical means like signal lamps or horns, electrical codes like Morse Code (1938), Telephones (1878) so effort. A portion of electromagnetic waves is used in telephones. amplitude modulated and frequency modulated radio, television, CB (citizen's band radio), satellite link in the recent days.
- Optical region of the electromagnetic spectrum which contains wavelengths from 50 nm (500 A*) ultraviolet) to about 1000 nm (10000 A") (far infrared) with the visible range from 400 nm to 700 nm (nanometre, 10^{-9} m).
- Advances in technology have made it possible to use optical fibres alongwith good optical sources, photodetectors and fibre cable connectors to transmit more data at high transmission rate from one place to a distant place.

2.22.4 Structure of Optical Fibre

Optical fibre is a dielectric waveguide and it operates at optical frequencies $(5 \times 10^4$ Hz). It is generally cylindrical, the core of which has higher refractive index (n_1) than that of the surrounding material (n_2) . The core

.in

ENGINEERING PHYSICS (BATU)

 (2.37)

OPTICS. FIBRE OPTICS AND LASER

and the surrounding dielectric together form an optical waveguide. Depending on the type of the waveguide, optical fibres are categorised into two steps as 1. Step Index Fibre and

- 2 Graded Index Fibre
-
- The path through which light is propagated is called Waveguide. In case of optical fibre, core and cladding together work as optical wavequide.

1. Core-Cladding Fibre

Core : In this type of optical fibre, there is a single solid dielectric cylinder of radius a and refractive index n_1 as shown in Fig. 2.48. This solid cylinder is known as the Core of the optical fibre.

Fig. 2.48 : Construction of step index optical fibre **Cladding (as a Rarer Medium):**

- The core is surrounded by a solid dielectric (cone polymer) Cladding having a refractive index n₂ which is less than n₁. Cladding reduces the scattering losses due to dielectric discontinuities at the core surface.
- Also, it adds to the mechanical strength of the fibre and protects the core from absorbing the surface contamination which can come in contact with it. The cladding is made up of either glass or plastic materials.

Buffer (for Mechanical Strength):

- Most fibres are encapsulated in an elastic abrasion resistant plastic material. This encapsulating material is called Buffer Coating. The buffer adds further
mechanical strength to the fibre and keeps away the fibre from small geometrical irregularities, distortions or roughness of the surrounding surfaces. This also avoids random microscopic or sharp bends when the fibres are incorporated into cables or when supported on some other structures.
- The conventional optical fibre consists of a core region of refractive index, n₁, which is surrounded by a cladding of lower refractive index, n₂. The fibre or a bundle of fibres is sheathed in an outer protective covering.

There are two types of optical fibres, viz. (a) step index and (b) graded index.

Fig. 2.51 : The paths of rays in step-index fibre

- In the step-index fibre, rays entering at different angles of incidence with the axis travel different path lengths and emerge out at different times. This results in Pulse Dispersion, i.e. an input pulse gets widened as it travels along the fibre.
- **Graded-Index Optical Fibre : The Refractive Index of** the Core Varies Continuously from n₁ at the centre to n₂ at the core-cladding interface. The cladding has the constant refractive index n2.
- In the graded-index fibre, a ray is continuously bent and travels a periodic path along the axis. Rays entering at different angles follow different paths with the same period, both in space and time. This results into periodic Self Focussing of the rays as shown in Fig. 2.52. Therefore, the pulse dispersion is less as compared with the step-index fibre.

OPTICS. FIBRE OPTICS AND LASER

.in

 (2.38)

Fig. 2.53 : The paths of rays in graded-index fibre

- The core diameters (2a) in fibres in use may range between 4 μ m to 100 μ m. The core + cladding diameter (2b) usually ranges between 100 um to 200 um.
- Fibres with narrow cores (about 10 um) allow only one wave-mode to pass and are called Monomode Fibres: while those with core diameters about 50 um and above allow different wavemodes and are called **Multimode Fibres**
- Optical fibres used commonly in telecommunication applications have $2b = 125 \ \mu m$ and (typical values for refractive indices are : $n_1 \equiv 1.5$ and $n_2 = n_1 (1 - \Delta)$ where $\Delta = 0.01$ to 0.02 (1 to 2 %)).

2.22.6 Index Difference (Core-Cladding Index Difference)

In practical step-index fibres, the core with radius has refractive index n_1 . A typical value of n_1 is 1.48. The cladding surrounding this core has a refractive index slightly lower than n_1 . The relation between n_1 and n_2 is given by

$$
n_2 = n_1 (1 - \Delta)
$$

where Δ is called core-cladding index difference or simply the index difference.

- The values of n_2 are chosen so that the index difference A is equal to 0.01. As the core is having higher refractive index than that of cladding, electromagnetic waves at optical frequencies propagate along the fibre due to Total Internal Reflection at the core-cladding interface.
- An optical fibre may be either monomode or multimode in case of both the types i.e. step index and graded-index fibre.

2.22.7 Advantages of Optical Fibres

Optical frequencies are extremely large. Since the frequency of light used as carrier is of the order of 1015 Hz, the information carrying capacity of a fibre is much greater.

- The optical fibres are made of dielectric material, which offers electrical isolation between input and output parts of the circuit.
- The material used in fibres is silica glass (or SiO₂). As this is available abundantly on earth, the cost of fibre lines is much lower.
- As fibres have a high information capacity, multiple channel routes can be compressed into very small cables. This helps in reducing congestions in overcrowded cable ducts.
- As fibres are very thin, light and occupy less space, a large number of them can be used at a time. Because of this, detailed images can be obtained. This is of particular importance in medicine where an endoscope, employing fibre optics is increasingly being used to take pictures inside the human body.
- The transmission is due to internal reflection, therefore there is less loss. The cable is immune to electric. magnetic or R.F. fields in atmosphere, because it is covered with a cladding.
- ¥ Active scintillating fibres (fibre lasers) are useful in developing flexible high intensity laser probes.

2.22.8 Acceptance Angle and Numerical Aperture [May 19]

Consider Fig. 2.54. ϕ is the angle of incidence at the corecladding interface for a ray entering the core making an angle, i, with the fibre axis.

Fig. 2.54 : Ray propagation through step-index optical fibre The condition for total internal reflection to take place is

$$
\sin \phi \ge \frac{n_2}{n_1} \qquad \dots (2.72)
$$

\nWe have, $\sin \phi = \sin (90 - r) = \cos r \qquad \dots (2.73)$
\nAlso, $\frac{\sin i}{\sin r} = n_1 \qquad \dots \sin r = \frac{\sin i}{n_1} \qquad \dots (2.74)$
\nNow, $\sin r = \sqrt{1 - \cos^2 r}$
\n $= \sqrt{1 - \sin^2 \phi} \qquad \dots (2.75)$

The condition of total internal reflection, (2.72), therefore can be expressed as

> (2.76) $\sin r \le$

.in

ENGINEERING PHYSICS (BATU)

(2.39)

Form

y.

G.

 $\mathcal{N}_{\mathcal{N}}$

ä.

OPTICS, FIBRE OPTICS AND LASER

Using (2.75), we have, sin i $n₁$

sin i $\leq \sqrt{n_1^2 - n_2^2}$ \dots (2.77) $\mathcal{L}_{\mathbf{z}}$

If i_m is the maximum angle of incidence for which total internal reflection can occur, we have

$$
\sin i_m = \sqrt{n_1^2 - n_2^2} \quad \text{for } n_1^2 - n_2^2 < 1
$$
\n
$$
= 1 \qquad \qquad \text{for } n_1^2 - n_2^2 \ge 1 \dots (2.78)
$$

Light incident within the cone of half-angle i_m at the input end of the fibre will undergo total internal reflection and be guided along the fibre. This, therefore, is a measure of the Light Gathering Power of the fibre. sin in is called the Numerical Aperture (N.A.) of the fibre.

The numerical aperture is a function of the refractive indices of core and the claddings.

2.22.9 Acceptance Cone

Fig. 2.55

The acceptance cone of an optical fibre decides its light gathering power and depends on acceptance angle. Larger the acceptance angle, larger is the light gathering power. The acceptance cone is derived by rotating the acceptance angle about the fibre axis. The Fig. 2.55 shows the acceptance cone.

Problem 2.47: Refractive index $n_1 = 1.48$ and $n_2 = 1.45$ in an optical fibre. Calculate numerical aperture and the maximum entrance angle $\theta_{\rm o,max}$ if the fibre is kept in air.

 $n_1 = 1.48, n_2 = 1.45$ Data: Formula : Numerical aperture, N.A. = $\sqrt{n_1^2 - n_2^2}$ $=\sqrt{1.48^2-1.45^2}$ Solution: $\frac{1}{2}$ $\sqrt{200}$

$$
= \sqrt{2.1904} - 2.123 = \sqrt{0.0679}
$$

= 0.2964
Also, N.A. = n ⋅ sin θ_{0 max} (here n = 1 for air)

$$
\therefore \qquad θ_{0 max} = sin^{-1}(N.A.) = sin^{-1}(0.2964)
$$

=
$$
\frac{[17.24^4]}{2.24^4} \text{ or } \frac{[17° 15']}{2.24^4}
$$

Problem 2.48 : Numerical aperture of an optical fibre is 0.5. Find the refractive index of cladding if the refractive index of the core is 1.53. Also calculate index difference. N.A. = 0.5. $n_1 = 1.53$ Data:

$$
A = \sqrt{n_1^2 - \frac{2}{n_2}}
$$

Solution:
$$
0.5 = \sqrt{1.53^2 - n_2^2}
$$

$$
0.25 = 1.532 - n22
$$

$$
n2 = 2.34 \cdot 0.25 = 2.09
$$

$$
n_2 = 2.34 - 0.25 = 2.09
$$

 $n_2 = 1.446$ (taking square roots)

Now, index difference

 Δ

$$
\Delta = \text{ change of refractive index per unit } \text{change of core refractive index.}
$$

$$
= \frac{n_1 - n_2}{n_1} = \frac{1.53 - 1.446}{1.53} = 0.055
$$

2.22.10 Applications of Optical Fibre

The optical fibers were basically designed for the optical communication. But now they are extensively used in other fields such as medicines, electronics, military etc. Some of them are discussed below.

1. Communication Applications

In communication system optical fibre is used to transmit the information from transmitter to receiver. The details of optical fibre link are discussed in Article 2.22.

The optical fibre cable is preferred over other links as :

- They have higher information carrying capacity. $\ddot{}$
- \cdot The optical fibres are made of dielectric materials, therefore transmitter and receiver are electrically isolated.
- The material used is silica glass which is very cheap. \cdot
- $\ddot{}$ As the information is transmitted by total internal reflection, the transmission losses are less.
- They are very thin, hence occupy very less space. \bullet

2. Medical Applications

The main use of optical fibre in medicine is to illuminate or burn the internal organs of human body and collect the scattered light for formation of image.

In endoscopy a bundle of optical fibre is used to illuminate the internal organs of human body where the sunlight cannot reach. Here light from artificial source of light is

 (2.40)

OPTICS, FIBRE OPTICS AND LASER

.in

quided through the fibre. The light will fall on the organ and will be scattered. This scattered light is collected by another bundle of optical fibres. This scattered light is used for formation of image.

In ophthalmology a laser beam is guided by the fibre is to detach the retina or for vision correction.

A guided laser beam through an optical fibre is also used in angioplasty. A special catheter having three channels - one for quiding laser beam, second for formation of image and third a hollow tube to remove the blocking tissues. The laser beam is used to cut or burn the unwanted tissues.

3. Military Applications

The military equipments, aircrafts, ships, submarines need heavy copper wires for communication equipments. The heavy weight copper wires can be replaced by light weight optical fibres. This reduces the load increasing the overall efficiency of the instruments.

Due to high information carrying capacity they can be used to transmit the video which shows the real situations and helps the ground staff for controlling unmanned vehicles, aeroplanes or missiles.

4. Fibre Optic Sensors

The fibre optic is used to couple the sensors and detectors. The advantages of these sensors are that they are cheap and light weight. These sensors can be used to measure pressure, temperature, stress etc.

Temperature Sensor : The fibre is coated with a thin silicon layer at one end. The silicon layer is backed by a reflective coating as shown in Fig. 2.56. When a light beam is passed through the coating it passes through the silicon layer and is reflected by reflective surface. This reflected light returns to the detector. The absorption of silicon varies with temperature which alters the intensity of the light received by the detector. This variation in the intensity of light is sensed as variation in temperature.

Pressure Sensor : The concept of photoelasticity or induced double refraction is used to design pressure sensor. Fig. 2.57 shows the schematic diagram of pressure sensor.

Fig. 2.57 : Pressure sensor

The photoelastic material is kept between crossed polarizer and analyzer. The monochromatic light is guided from source to polarizer using an optical fibre. Then the light is passed through the photoelastic material. The light coming out of the photoelastic material is passed through the crossed (kept at 90° w.r.t. polarizer) analyzer. When no pressure is applied, the axis of polarization remains unaltered and hence no light passes through the analyzer. When mechanical pressure is applied bire fringence is introduced. This gives O-ray and E-ray which are plane polarized in the plane perpendicular to each other. The O-ray will pass through the analyzer. Hence transmission of light occurs which is detected by the detector.

- Smoke or Pollution Detector : A smoke detector can be constructed by using optical fibre. A beam of light coming out off a fibre is collected by another fibre kept at some distance. If smoke or dust particles are present between fibres. light will be scattered by smoke particles. This will reduce the amount of light collected by the second fibre. The intensity of light collected will depend on the density of smoke, hence the variation in density will be detected.
- Interference Sensor : In this, a single mode fibre is used. A beam splitter is used to divide a laser beam into two parts. Each of these two parts are collected by two separated fibres. One of the fibres acts as sensing fibre and other as reference fibre. The sensing fibre changes the opitcal path of the light travelling through it, due to change in the length or refractive index of the fibre. Fig. 2.58 shows the Mach-Zehnder arrangement of interferroelectric sensor.

The light entering the fibres is coherent whereas light coming out of the fibres will have phase difference due to change in the optical path due to physical parameter being measured. These two beams interfere to give interference pattern. The measurement of fringe width will give the value of physical parameter being measured.

.in


```
(d) Fringes obtained are: equal in thickness, straight,
   parallel and equidistant.
```
OPTICS, FIBRE OPTICS AND LASER

Newton's Rings: Fringes of circular in shape with dark fringe at the centre. The width of the fringe decreases with the order of the fringe i.e. as one moves away from the centre.

Diameter for

(a) Bright ring (reflected light)

$$
D^2 = (2n \pm 1) \cdot 2\lambda R
$$

$$
D_n^2 = 4n\lambda R
$$

Wavelength of Monochromatic Source of Light:

$$
\lambda = \frac{D_{n+a}^2 - D}{4nR}
$$

Refractive Index of Liquid:

$$
\mu = \frac{D_{n+p}^{2} - D_{n}^{2}}{D_{n+p}^{2} - D_{n}^{2}}
$$

- Unpolarized Light has the electric vector vibrating along all possible directions at right angles to the direction of propagation of light.
- Types of Polarization (i) Plane, (ii) Circular and (iii) Elliptical
- Partially Polarized Light: Mixture of plane polarized light and unpolarized light.
- If the vibrations of the electric vector in a light wave are confined to a single plane, then the light wave is plane polarized or linearly polarized.
- Methods of Production of Plane Polarized Light: (i) Reflection, (ii) Refraction, (iii) Scattering, (iv) Selective absorption and (v) Double refraction.
- Brewster's Law: States that, tangent of the angle of polarization is proportional to the refractive index of the medium i.e. $\mu = \tan i_p$.
- Double Refraction or Birefringence: When light passes through anisotropic crystals, it splits up into two ravs. O-ray and E-ray.
- **Birefringence** of the crystal is given by, $\Delta \mu = \mu_e \mu_o$.
- Positive Crystals : the velocity of ordinary ray is greater than that of the extraordinary ray ($\mu_e > \mu_o$).
- Negative Crystals : the velocity of extraordinary ray is
- greater than that of the ordinary ray $(\mu_a > \mu_e)$. Optic Axis : O-ray and E-ray travel with the same velocity.

.in

- Polaroid : Uses selective absorption for obtaining plane polarized light. Nicol Prism : Optical device used for producing and
- analyzing plane polarized light. Optical Activity : The phenomenon of rotation of the
- plane of polarization.
- Rotatory Dispersion : The rotation is nearly proportional to the inverse square of the wavelength. This gives a violet being rotated nearly four times as much as red light.
- Polarimeters : Are instruments used for finding the optical rotation of different solutions. When they are calibrated to read directly the percentage of cane sugar in a solution, they are named as Saccharimeters.
- LASER: Light Amplification by Stimulated Emission of Radiation
- Absorption: Absorption is a process in which a photon, of energy hu, gets absorbed by an atom and it goes from a lower energy state E₁ to a higher energy state E₂.
- **Emission:**
- Spontaneous Emission : An electron which is raised to an excited state E₂ (due to absorption), spontaneously decays back to a lower energy level E₁ and radiates an energy equal to $E_2 - E_1$. Such an emission is called as spontaneous emission. This emission is random in nature and depends only on the type of atom and type of transition.
- **Stimulated Emission:** A photon of energy hv = $E_2 E_1$ triggers an excited atom to drop to the lower energy state giving up a photon. This phenomenon of forced emission of photons is called as stimulated emission.
- Population Inversion: The process of getting a large percentage of atoms into an excited state is called as population inversion.
- Active System: A system in which population inversion is achieved is called an active system.
- Pumping: A method of raising atoms from lower energy levels to higher energy levels is called as pumping. It can be done by subjecting the atoms to a non-uniform electric field, flooding the gas with high intensity light (optical pumping) etc.
- Metastable States: Ordinary energy levels have a life time of 10⁻⁸ to 10⁻⁹ secs. Energy levels having a life time greater than ordinary energy levels ($\sim 10^{-6}$ to 10^{-3} secs) are called as metastable states.

Types of Lasers: Lasers are mainly divided into the following categories: (i) Solid state laser, (ii) Gas laser, (iii) Semiconductor laser.

They can be operated in two modes: (a) Continuous, (b) Pulsed.

- ä, Solid-State Laser: Ruby laser is an example of solidstate laser. It produces an intense red beam using a three-level system with a wavelength of 6943 A°. It is a pulsed laser.
- Gas Laser: He-Ne laser is an example of a gas laser. It employs a four-level pumping scheme and operates in continuous mode. It produces a beam of wavelength 6328 A°.
- Semiconductor Laser: A semiconductor laser is a specially fabricated pn junction that emits coherent light when it is forward biased. The basic mechanism of producing laser in a semiconductor diode laser, is the electron-hole recombination at the pn junction when a current is passed through the diode.
- **Major Properties of Laser:** \bullet
	- (i) Directionality, (ii) Monochromaticity,
	- (iii) Coherence, (iv) Polarizability.
- Applications: Due to its unique properties, lasers are used in a variety of fields like welding, machining, surveying, communication, holography, cutting, drilling, information processing, surgery and related medical fields, in CD players, printers, etc.
- Principle: Total internal reflection.
- Total Internal Reflection : When light passes from denser to rarer medium and if angle of incidence is greater than critical angle, then light is totally reflected into the denser medium.
- Optical Fibre : It is a dielectric wavequide
- Waveguide : The path through which light is ٠ propagated / guided. Optical waveguide consists of core and cladding.
- Core : A single dielectric cylinder of radius r and refractive index n.
	- Cladding : A solid dielectric material surrounding the core with refractive index n_2 (n_2 > n_1).
- Step-Index Optical Fibre : The core has a uniform refractive index n_1 and the cladding has a uniform refractive index n-

ENGINEERING PHYSICS (BATU) (2.43) OPTICS, FIBRE OPTICS AND LASER Graded-Index Optical Fibre : The refractive index of For polarization by reflection, $i_p + r = \frac{\pi}{2}$ ï the core varies continuously from n_1 at the centre to n_2 at the core-cladding interface. The transmitted light through polarizer (Law of Malus), Acceptance Angle : Light incident within the cone of $I = I_0 \cos^2 \theta$ half angle θ_o Refractive index of O-ray, $\mu_0 = \frac{\sin i}{\sin r_0} = \frac{c}{v_0}$. Numerical Aperture : sin $\theta_0 = \sqrt{n_1^2 - n_2^2}$. Refractive index of E-ray, $\mu_e = \frac{\sin i}{\sin r_a} = \frac{c}{v_a}$ Modes of propagation: (a) Single mode, (b) Multimode. Specific rotation **IMPORTANT FORMULAE** $s = \frac{100}{1 \times c}$ General condition for constructive interference, Rate of absorption, $R_{12} = P_a N_1$. $x = n\lambda$, where $n = 0, 1, 2...$ Rate of stimulated emission, $R_{21} = P_e N_2$. General condition for destructive interference. At equilibrium, $P_a = P_{a}$ x = $(2n + 1)\frac{\lambda}{2}$, where n = 0, 1, 2 ... Population inversion, $N_2 > N_1$. For uniform film, Frequency of photons emitted, $v = \frac{E_2 - E_1}{h}$. ٠ > Condition for constructive interference, **UNSOLVED PROBLEMS** 2µt cos r = (2n ± 1) $\frac{\lambda}{2}$, n = 0, 1, 2 ... 1. A parallel beam of light of wavelength 5890 A° is > Condition for destructive interference, incident on a thin film of refractive index 1.5, such $2\mu t \cos r = n\lambda$, $n = 0, 1, 2 ...$ that the angle of refraction into the film is 60°. Calculate the smallest thickness of the film which will For nonuniform (wedge) film, make it appear dark by reflection. > Condition for constructive interference, [Ans. 3.926×10^{-5} cm] 2µt cos (r + a) = (2n ± 1) $\frac{\lambda}{2}$, n = 0, 1, 2 ... 2. Two pin holes separated by a distance of 0.5 mm are illuminated by a monochromatic light of wavelength > Condition for destructive interference, 6000 A°. An interference pattern is obtained on a $2\mu t \cos(r + \alpha) = n\lambda$, $n = 0, 1, 2...$ screen placed at a distance of 100 cm from the pin Fringe width of fringes formed by wedge film, holes. Find the distance on the screen between the $\beta = \frac{\lambda}{2\mu \sin \alpha}$ fifth and tenth dark fringes. [Ans. 0.6 cm] 3. An oil drop of volume 0.2 cc is dropped on the surface of a tank of water of area 1 sq. meter. The Newton's rings film spreads uniformly over the whole surface and > Diameter of bright fringe, white light reflected normally is observed through a $D_n^2 = \sqrt{2\lambda R} \cdot \sqrt{2n \pm 1}$ (bright) spectrometer. The spectrum is seen to contain first dark band whose centre has wavelength of 5.5×10^{-5} > Diameter of dark fringe, $D_0^2 = 4n\lambda R$ cm. Find the refractive index of oil. [Ans. 1.375] Wavelength of monochromatic source of light, 4. A soap film of refractive index $\frac{4}{3}$ and of thickness $\lambda = \frac{D_{n+p}^2 - D_n^2}{4nR}$ 1.5×10^{-4} cm is illuminated by white light incident at an angle of 60°. The light reflected by it is examined by a spectroscope in which is found a dark band Refractive index of liquid, $\mu = \frac{D_{n+1}^{'2} - D_n^{'2}}{D_{n+1}^2 - D_n^2}$ corresponding to a wavelength of 5×10^{-5} cm. Calculate the order of interference of the dark band. [Ans. $n = 6$] Brewster's Law, $\mu = \tan i_0$

٠

OPTICS. FIBRE OPTICS AND LASER

 (2.44)

5. The optical path difference between two sets of similar waves from the same source arriving at a point on the screen is 199.5 λ . Is the point dark or bright ? If the path difference is 0.012 cm, find the wavelength of the light used. [Ans. Dark, 6015 A°]

ENGINEERING PHYSICS (BATU)

- 6. In a Newton's rings experiment, the diameter of the 5th ring is 0.336 cm and the diameter of the 15th ring is 0.590 cm. Find the radius of curvature of the plano convex lens, if the wavelength of light used is 5890 A^o [Ans. 99.82 cm]
- 7. In a Newton's rings experiment, find the radius of curvature of the lens surface in contact with the glass plate when with a light of wavelength 5890 A°, the diameter of the third dark ring is 0.32 cm. The light is incident normally. [Ans. 144.9 cm]
- 8. In Newton's rings, the diameter of a certain bright ring is 0.65 cm and that of tenth ring beyond it is 0.95 cm. If λ = 6000 A°, calculate the radius of curvature of a convex lens surface in contact with the glass plate. [Ans. 200 cm]
- 9. In a Newton's rings experiment, a drop of water $\left(\mu = \frac{4}{3}\right)$ is placed between the lens and the plate. In that case, the diameter of the 10th ring was found to be 0.6 cm. Calculate the radius of curvature of the face of the lens in contact with the plate, given $\lambda = 6000 A^{\circ}$ [Ans. 200 cm]
- 10. Newton's rings are observed in reflected light of λ = 5900 A°. The diameter of the 5th dark ring is 0.4 cm. Find the radius of curvature of the lens and the thickness of the air film.

[Ans. 35.59 cms. 0.000295 cm]

- 11. In a Newton's ring experiment, the diameters of 4th and 12th dark rings are 0.4 cm and 0.7 cm respectively. Calculate the diameter of 20th dark ring. [Ans. 0.894 cm]
	-
- 12. In a Newton's rings experiment, the source emits two wavelengths λ_1 = 6000 A^o and λ_2 = 4500 A^o. It is found that n^{th} dark ring due to λ_1 coincides with $(n + 1)$ th dark ring due to λ_2 . If the radius of curvature of the curved surface is 90 cm, find the diameter of n^{th} dark ring for λ_1 . [Ans. 0.2538 cm]
- 13. If the diameter of nth dark ring in a Newton's ring experiment changes from 0.3 cm to 0.25 cm, as a liquid is placed between the lens and the plate, calculate the value of μ of the liquid.[Ans. $\mu = 1.44$]
- 14. A wedge-shaped air film, having an angle of 45 seconds, is illuminated by monochromatic light and fringes are observed vertically through a microscope. The distance measured between the consecutive fringes is 0.12 cm, calculate the wavelength of light used [Ans. 5233 A[°]]
- 15. Two pieces of plane glass are placed together with a piece of paper between the two at one edge. Find the angle in seconds, of the wedge shaped air film between the plates, if on viewing the film normally with monochromatic light of wavelength 4800 A° there are 18 bands per cm. **JAns. 89.1 seconds)**
- 16. Two rectangular pieces of a plane glass are laid one upon the other and a thin wire is placed between them, so that a thin wedge shaped air film is formed between them. The plates are illuminated with sodium light of λ = 5893 A° at normal incidence. Bright and dark bands are formed, there being 10 of each per cm length of the wedge measured normal to the edge in contact. Find the angle of the wedge.

[Ans. 2.94×10^{-4} radians]

- 17. Two optically plane glass strips of length 10 cm are placed one over the other. A thin foil of thickness 0.010 mm is introduced between the plates at one end to form an air film. If the light used has wavelength 5900 A°, find the separation between consecutive bright fringes. [Ans. 0.295 cm]
- 18. Find the thickness of a wedge-shaped film at a point where fourth bright fringe is situated. λ for sodium [Ans. 1.03×10^{-4} cm] light is 5893 A°.
- 19. If the plane of vibrations of the incident beam makes an angle of 30° with the optic axis, compare the intensities of extraordinary and ordinary light.

Ans. $\frac{I_0}{I}$ = 3

- 20. A beam of light travelling in water strikes a glass plate which is also immersed in water. When the angle of incidence is 51[°], the reflected beam is found to be polarized. Calculate the refractive index of glass. [Ans. 1.235]
- 21. A glass plate is used as a polarizer. Find the angle of polarization for it. Also find the angle of refraction, given μ for glass = 1.54. [Ans. 57°, 33°]

.in

.in

OPTICS, FIBRE OPTICS AND LASER

e their polarizing directions parallel so that the intensity of the transmitted light is maximum. Through what angle must either sheet be turned so that the intensity becomes one half the [Ans. 45°, 135°] initial value ?

 (2.45)

- 23. The refractive index for plastic is 1.25. Calculate the angle of refraction for a ray of light inclined at polarizing angle. **IAns. 38.6°1**
- A beam of light is passed through two Nicol prisms in series. In a particular setting, maximum light is passed by the system and it is 500 units. If one of the Nicols is now rotated by 20°, calculate the intensity of transmitted light. Tans 441 5 units)
- 25. Two Nicol prisms are oriented with their principal planes making an angle of 30°. What percentage of incident unpolarized light will pass through the system? [Ans. 37.5 %]
- 26. A polarizer and an analyzer are oriented so that the amount of light transmitted is maximum. To what fraction of its maximum value is the intensity of the transmitted light reduced when the analyzer is rotated through (i) 45°, (ii) 90°? [Ans. 0.5, 0]

EXERCISE

- \mathbf{I} . Explain the phenomena of interference.
- $\overline{2}$ What is constructive and destructive interference ?
- $\overline{3}$ Derive the conditions for constructive and destructive interference. Explain the phenomenon of interference in thin films
- in reflected light.
- What are Newton's rings ? Explain how they are 5. formed.
- Explain the formation of colours in thin films. 6
- \overline{I} Explain the phenomenon of interference in thin film in transmitted light.
- How can Newton's rings be obtained in the \mathbf{a} laboratory ? How will you use them to measure the wavelength of sodium light?
- 9. Explain the theory and the experimental arrangement of Newton's rings experiment.
- What have you understood by non-reflecting films ? 10 Explain.
- 11. In Newton's rings, show that the radii of dark rings are proportional to the square root of natural numbers.
- 12. When seen by reflected light, why does an excessively thin film appear to be perfectly black when illuminated by a white light?
- 13. Explain, why colours are not observed in the case of a thick film when illuminated by a white light.
- How can Newton's rings be used to determine the 14. refractive index of a liquid ? Derive the formula used.
- 15. Prove that in reflected light Newton's rings, the diameters of bright rings are proportional to the square root of the odd natural numbers.
- 16. How can Newton's rings be obtained in the laboratory ? Prove that for Newton's rings in reflected light, the diameters of dark rings are proportional to the square root of natural numbers. 17 Explain the term polarization of light.
- Define plane of polarization and plane of vibration. 18.
- Explain a method to show that light waves are transverse 19. Distinguish between polarized and unpolarized light.
- State Brewster's law and use it to prove that when 20. light is incident on a transparent substance at the polarizing angle, the reflected and refracted rays are at right angles to each other.
- Explain how you would obtain plane polarized light 21. by reflection.
- 22. What is pile of plates ? Explain how it can be used for producing plane polarized light.
- 23 What is polarizing angle ? Explain 24. Explain the phenomenon of double refraction in
- calcite 25. Describe the construction and working of a Nicol
- prism. 26. What is a Nicol prism ? Explain how a Nicol prism can
- be used as an analyzer and polarizer. 27. Explain giving diagrams the nature of refraction
	- observed in the case of calcite crystal when: (a) Optic axis is parallel to the refractive surface and lying in the plane of incidence (normal incidence).
	- (b) Optic axis is perpendicular to the refracting surface and lying in the plane of incidence (normal incidence).
- 28. Give Huvgen's construction for ordinary and extraordinary wavefronts when the beam of light is refracted through a doubly refracting crystal when the optic axis is inclined to the crystal surface and lying in the plane of incidence (normal incidence). 29
- What does the numerical aperture indicate ?
- 30. Give advantages of using optical fibre as compared to conventional cable for telecommunication.
- $31.$ What is optical activity? Explain, how Laurentz's half shade polarimeter can be used for measuring specific rotation?
- $32.$ Explain the operation of Ruby laser with a neat labelled diagram. 33.
	- Explain the following terms:
	- (i) Spontaneous emission (ii) Stimulated emission (iii) Population inversion.

- 34. Explain action of gas laser. How does stimulated emission take place with exchange of energy between Helium and Neon atoms?
- 35. What is population inversion ? Explain the operation of He - Ne laser.
- 36. What are the different uses to which laser beams are put in industry, medicine?
- 37 Define and explain the terms:
- (i) Pumping (ii) Active systems.
- 38 Write a note on use of lasers in fibre communication systems and information technology.
- Explain the elements of optical fibre communication 39 link.
- 40 What are various parts in the optical fibre communication system?
- Explain total internal reflection and its relation with 41. the working of optical fibre.
- 42 Give constructional features of optical fibre.
- Describe various parts of optical fibre ? 43
- Give name of different types of optical fibre and their 44. structure.
- What do you mean by 45
- (i) Monomode fibres, (ii) Multimode fibres.
- 46. Explain 'Numerical Aperture' and arrive at the expression for numerical aperture.

REFERENCES

- For Better Understanding of Interference Patterns from **Thin Films:**
- http://dev.physicslab.org/Document.aspx?doctype=3&f ilename=PhysicalOpticsThinFilmInterference.xml.
- Animations of thin film interference patterns:
- http://www.wellesley.edu/Physics/Yhu/Animations/tfi.ht m_l
- To understand physics behind antireflection coatings: http://mysite.verizon.net/vzeoacw1/thinfilm.html
- Photographs of Newton's Rings pattern: http://www.fas.harvard.edu/~scdiroff/1ds/LightOptics/
- NewtonsRings/NewtonsRings.html
- More information about Michelson's interferometer and photographs of fringes:
- http://www.phy.davidson.edu/StuHome/cabell_f/diffrac tionfinal/pages/Michelson.html.
- Better understanding of polarization with some animations: http://www.colorado.edu/physics/2000/polarization/in dex.html
- Animation of double refraction:
- http://www.olympusmicro.com/primer/java/polarizedli ght/icelandspar/index.html

Three dimensional diagram showing different types of polarization:

http://hyperphysics.phyastr.gsu.edu/hbase/phyopt/polclas.html.

UNIVERSITY QUESTIONS

December 2017

- 1. Derive an expression for the optical path difference for the reflected rays in a thin film of constant thickness and hence find the conditions for maxima and minima. $[6]$
- What is double refraction? Explain the difference between ordinary ray (O-ray). And extra ordinary ray (e-ray) $[6]$
- 3. What is population inversion and stimulated emission ? Calculate the acceptance angle of an optical fibre where the refractive index of core is 1.55 and that of cladding is 1.50. $[4 + 2]$

May 2018

- 1. In case of Newton's rings in reflected light show that diameter of bright rings is proportional to the square root of odd natural numbers. In Newton's rings, the diameter of a certain bright ring is 0.65 cm and that of tenth ring is 0.95 cm. If λ = 6000 A*, calculate the radius of curvature of a convex lense.
- 2. Give the diagrammatic representation of polarized and unpolarized light. [6] Explain the method of producing plane polarized light by reflection.
- 3. Explain the construction and working of He-Ne laser with neat diagram. [6]

December 2018

- 1. In case of Newton's rings, prove $D_n \alpha \sqrt{n}$, where D_n is diameter of nth dark ring. [6]
- 2. Explain Double refraction using Huygen's wave theory of light. [6]
- 3. Explain the construction and working of Ruby laser with neat diagram. [6]

May 2019

- 1. Prove that for Newton's rings in reflected light, the diameter of dark ring is proportional to the square root of natural numbers. $[6]$
- 2. Explain construction and working of Ruby laser with neat diagram. $[6]$
- 3. Obtain mathematical expression for acceptance angle and numerical aperture. $[6]$

图面图

UNIT III

ELECTRON OPTICS, NUCLEAR PHYSICS AND QUANTUM MECHANICS

3.1 INTRODUCTION TO ELECTRON OPTICS 1. Description and Working :

- t is a known fact that Cathode Rays consist of electrons moving with a high speed. Electrons enter into the constitution of any kind of matter. Therefore, before commencing the study of any electronic device, it is imperative to understand the behaviour or motion magnetic fields. The first part of the chapter is devoted electrons. to this. The beam stnkes the surface of the discharge tube
- electric and magnetic fields and of producing material, fluorescence is produced. scintillations on a fluorescent screen are made use of in the construction and action of a CRO and an electron microscope
- The electron microscope has gained a place as an invaluable device to professionals dealing with the ultra invaluable device to professionals dealing with the Group
small in a number of spheres. The second part of the Due to the electric field, the electronic beam is
chapter deals with these instruments and the principles defle of focusing of electrons required for the functioning of an electron microscope.
- Microscopy is now an invaluable tool for the study of the finer and smaller details of matter. A preliminary discussion of scanning electron microscopy and scanning tunneling microscopy is given here.
- The last part of the unit concentrates on positive rays and their analysis, which led to the discovery of isotopes with the help of mass spectroscopy. Details of the most elegant of the mass spectrographs, the Bainbridge mass spectrograph are given in this section

3.2 MEASUREMENT OF 'e/m' BY THOMSON'S 2. Theory: **METHOD**

In 1897, J. J. Thomson succeeded in determining the e/m $\Big|_0$. atio of electrons.

- Cathode rays are produced in the discharge tube, when a high potential diference is applied between the cathode C and the ànode A.
- The rays then pass through two slits or metal diaphragms S_1 and S_2 maintained at anode potential. of the electron under the action of electric and | The purpose of the slits is to obtain a fine beam of
- The properties of the electrons of being deflected by normally at O. As it is coated with a fluorescent
	- P and Q are two plates between which electric field is produced by applying a suitable potential difference. This field is perpendicular to the plates and is directed from the positive plate to the negative
	- deflected upwards (P being positive). Now, the fluorescent spot is obtained at R.
	- By placing the tube between the pole pieces of a powerful electromagnet, a magnetic field is applied in a direction perpendicular to the plane of the plates and the direction of motion of electrons
	- The direction of the field is adjusted so that the electron beam is deflected downwards. The fluorescent spot is now obtained at S.
	- The direction of deflection of electrons under the influence of a magnetic field is obtained by Fleming's left hand rule.

٠

- $[Dec. 18]$
 Deflection of Electron Beam by Magnetic Field :
 g the e/m
 e The electric and magnetic fields are firstly switched off. The position of the spot O on the screen for the undeflected beam is noted. The magnetic field is now applied in à direction perpendicular to the direction of motion of electrons.
	- 1f B' is the intensity of the magnetic field, 'e' the charge of the electron, V the velocity of the electron, then BeV is the magnetic force acting on the electron. this torce is directed perpendicular to the motion of the electrons and magnetic field. (Fleming's law). Under the effect of

 \ldots (ii)

ENGINEERING PHYSICS (BATU) **3.2)** ELECTRON OPTICS, NUCLEAR PHYSICS ...

a constant uniform magnetic force, the electrons take The value of OQ is given on the discharge tube, r can
therefore he calculated from relation (3.2)

- Fig. 3.2
Beyond the region of influence of the magnetic field
(dotted region), the electron beam emerges out in a (dotted region), the electron beam emerges out in a straight line, the straight line, tangential to the arc at the point of substituting values of E, d, B, ED and OQ, e/m can be emergence as shown in Fig. 3.2.
- If r is the radius of the circular path, then the coulomb/kg.

where m is the mass of the electron and B the strength of the magnetic fied. Under the intuence of the magnetic tield, the magnetic torce Supplies the centripetal force.

Hence,
$$
B \cdot v = \frac{mv^2}{r}
$$

 $\frac{v}{Br}$ $\underline{\mathsf{e}}$ (3.1) or

- or $\overline{m} = \overline{Br}$... (3.1) charge of electron is 1840 times charge of hydrogen
Thus, if r and v are known then the specific charge ratio ion, mass being same or mass of electron is $\frac{1}{1840}$ of the same. To the speci
- Calculation of r: From Δ EDF, \angle EDF = 90° θ As OQ is tangent to FD, hence \angle OD'D = 90° Thus from Δ ODD',

$$
\angle
$$
 DOD: = θ

From \triangle EDF, tan $\theta = \frac{\text{arc ED}^*}{r} \approx \frac{ED}{r}$ Hence, from (i) and (ii), we get

$$
\frac{d}{OQ} = \frac{ED}{r}
$$
\n
$$
or \quad r = \frac{ED \times OQ}{d}
$$
\n
$$
\dots (3.2)
$$
\n
$$
(3.3)
$$
\n
$$
Length = 5
$$

ED is the region of infiuence of the field. This is taken equal to the length of the plate P or Q in Fig. 3.1.

therefore be calculated from relation (3.2).

Determination of v: Under the influence of crossed electric and magnetic fields, the beam strikes the screen at the same spot O as that of the undeflected beam. In such a case, the force on the electron due to the electric field (Ee) is balanced by the deflecting force (Bev) due to the magnetic field. Hence, $Bev = Ee$

i.e.,
$$
v = \frac{E}{B}
$$
 ... (3.3)

Substituting values of v and r in (3.1), we have

$$
\frac{e}{m} = \frac{E}{B^2} \cdot \frac{d}{(ED \times OQ)} \qquad \qquad \dots (3.4)
$$

calculated. Value of e/m of an electron is 1.7589×10^{11}

- centripetal force acting on the electron beam is $\frac{mv^2}{r}$ \cdot Value of e/m is found to be a constant, independent of the cashop and B the strength the material of the cathode and the nature of the gas the material of the cathode and the nature of the gas
in the tube. So, nature of particles in the cathode rays
are of the same kind irrespective of their origin and velocity acquired,
	- Comparing the value of e/m of the electron with that of e/m of the hydrogen ion, it is seen that the first is 1840 times that of the latter. This implies that either charge of electron is 1840 times charge of hydrogen

mass of hydrogen ion, charge being the same. To ensure this, e is measured separately.

ENGINEERING PHYSICS (BATU) **A ELECTRON OPTICS, NUCLEAR PHYSICS** ...

- - \triangleright A and 8 are plane metallic disc of about 20 cm in drop becomes discrete planet for distance of 1.6 cm. The discrete on the tissue diameter placed at a distance pf 1.6 cm. The discs are clamped by insulating rods of glass or ebonite so that they remain perfectly parallel to each other. The discs are placed in metallic chamber provided i.e. $\frac{4}{3}$
The discs are placed in metallic chamber provided
	- with three windows W₁, W₂ and W₃. A variable $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ and the second part of the experiment, an electric field E
voltage is applied between the plates A and B. The $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ is applied between t through which small droplets of a heavy non violate oil can be introduced between two plates through a spring atomizer.
	- The droplets come slowly which gets charged due $\frac{4}{3} \pi a^3 (p \sigma) g qE = \sigma \pi \eta a v_2$... (3.9)
to friction in the spray process. The space between to friction in the spray process. The space between where, 'q' is charge on oil drop.
two plates is illuminated by high intensity light beam. This illuminates the oil droplets which can be seen by a telescope which is connected to a scale for measurement.
- \triangleright When illuminated the oil drops appear as brilliant spots on a dark background. spots on a dark background.
Procedure : \overline{a}

- The experiment is performed in two stages. In first stage the experiment is performed in the absence of
electric field between the plates. When oil is dropped, electric field between the plates. When oil is dropped, a 200-
the oil drop moves down under the influence of gravitational force. Due to air friction, soon electron will reach terminal velocity. ie. its velocity will not increase
- equals the force offered by air resistance. If 'p' is the density of oil, 'g' is acceleration due to gravity and 'a' the radius of the oil drop then,

Weight,
$$
W = \left(\frac{4}{3} \pi a^3\right) \rho h
$$
 ... (3.5)

By Archimede's principle the upward thrust experience
by oil drop due to displaced air is,

$$
T = \left(\frac{4}{3}\pi a^3\right)\sigma g \qquad \qquad \dots (3.6)
$$

If a spherical body of radius a falls under gravity in fluid having a coefficient of viscosity 'n', then by Stroke's law

Set-up
A and B are plane metallic disc of about 20 cm in drop becomes uniform the resultant force on the drop

$$
W = T + f
$$

i.e.
$$
\frac{1}{3}
$$
 $\pi a^3 (p - \sigma) g = \sigma \pi \eta a v_1$... (3.8)

voltage is applied between the plates A and B. The is applied between the plates. Now an additional
upper plate A is provided with a small hole in inward electric force of acts on the oil drop. Due to upward electric force qE acts on the oil drop. Due to which the terminal velocity reduces to v_1 . Therefore, the equation of motion for drop becomes.

From equation (3.8) and (3.9),

$$
G = \sigma \pi \pi \pi / (m - \mu)
$$

$$
q = \frac{\sigma \pi \eta a}{E} (v_1 - v_2) \qquad \qquad \dots (3.10)
$$

or

$$
a^{2} = \frac{g \eta v_{1}}{2 g (\rho - \sigma)}
$$

$$
a = \left[\frac{g \eta v_{1}}{2 g (\rho - \sigma)}\right]^{1/2} \dots (3.11)
$$

Substituting value of a in equation (3.10),

reach terminal velocity, i.e. its velocity will not increase
further.
At this stage the net downward gravitational force

$$
q = \frac{\sigma \pi \eta}{E} \left[\frac{q \eta v_1}{2 g (p - \sigma)} \right]^{1/2} (v_1 - v_2) \dots (3.12)
$$

At this stage the net downward gravitational force

Millikan's is 1.59×10^{-19} C., which agrees with recent experimental values. experimental values.

3.4 MASS SPECTROGRAPH

- Isotopes are elements having the same atomic number but different atomic weights.
- For Example $\frac{1}{2}$ and $\frac{1}{10}$ and
- As the atomic number of isotopes is the same, they have the same electronic configuration and hence the where, 'a' is density of air. The same chemical properties. They can therefore be same chemical properties. They can therefore be separated by physical methods and not by chemical methods.

the resistive force due to medium $f = \sigma \pi n a v_1$ \ldots (3.7) value of isotopic masses and their abundance, F.W. value of isotopic masses and their abundance, F.W. Aston, an English Physicist, devised a mass where, v₁ is the velocity of the drop.
spectrograph. This spectrograph brought about a

deflection mass spectrograph.

Aston's or Dempster's spectrographs.
Principle:

3.5 BAINBRIDGE MASS SPECTROGRAPH

selector in his spectrograph and was able to obtain, a

high resolving power, precise symmetric images and a linear mass scale which could not be obtained in

their generation, they are made perfectly homogeneous in velocity by the use of a specal device called the Velocity Selector. They are then subjected

to an extensive, transverse magnetic field and are

Beam of
positive ions

Magnetic field B'

ENGINEERING PHYSICS (BATU) (3.4) ELECTRON OPTICS, NUCLEAR PHYSICS...
separation between the isotopes on the basis of their \int_a Incide the selector

separation between the isotopes on the basis of their **Inside the selector, masses. This was followed by Dempster's which has Inside the selector** \blacksquare The magnetic force recently been superseded by Bainbridge's magnetic

 $Eq = Bay$

(q is the charge of the ion moving with a velocity v).

[Dec. 17. May 19]
$$
y = \frac{1}{8}
$$
 ... (3.13)

- Bainbridge used a power electromagnet and a velocity $\begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot$
	- The ions emerging from slit S_k at the exit of the selector, are introduced into a uniform magnetic field of intensity B' acting at right angles to the plane of the paper.
- Under the influence of this field they travel along circular paths which are governed by the following Whatever be the velocities of the ions in the process of $\begin{bmatrix} \text{circular} \\ \text{relation} \end{bmatrix}$

Magnetic force= Centripetal force

i.e.,
$$
B' q v = \frac{m v}{r}
$$
 ... (3.14)

brought to focus on a photographic plate. and the mass of the ion whose circular path has a radius r.

From (3.13) and (3.14, we get

$$
B'q = \frac{m}{r} \frac{E}{B}
$$

and
$$
\frac{E}{m} = \frac{1}{8 \cdot 8} \cdot \frac{1}{r}
$$

- As E, B, B' are constants, q/m (specific charge ratio) is directly proportional to $1/r$ or m \propto r and the mass scale is linear. Hence, after describing semi-circles, if the ions are made to fall on a photographic plate, they will strike it at different points depending on the value of mass. Lighter particles will trace small semi-circles while heavier ones will trace larger semi-circles. Traces are obtained on the photographic plate with the mass scale being linear.
- Apparatus :
 Apparatus Presence of isotopes is therefore detected by the

Presence of isotopes is therefore detected by the production of spots on the photographic plate. Mass numbers of the isotopes can be found by comparing the plate with a standard calibrated plate. Relative abundance of the isotopes in a given beam of ions can be found by studying the relative intensity of the spots on the photographic plate.

-
- The velocity selector allows only those ions to pass \vert . To determine the mass number of the isotopes,
	- the given beam of positive ions.

***X**

elector

Photographec plate

Fig. 3.4: Bainbridge spectrograph

- The given beam of ions is collimated by two narrow parallel slits S_1 and S_2 . It is then passed through a velocity selector, which consists of a transverse electric field E which is produced by maintaining plates A and B at a suitable p.d.
- Simultaneously a magnetic field B is applied perpendicular to both E and the motion of the ions. Hence a Baihbridge mass spectrograph is used: The magnetic field is obtained by an electromagnet | . To detect the presence of isotopes in a given beam of represented by the dotted circle. The positive ions,
- undeviated which possess the same velocity \vee given \bullet To find out the relative abundance of the isotopes in by the following relation.

SOLVED PROBLEMS
Problem 3.1: In a Bainbridge mass spectrometer, if the

mognetic field in the velocity selector is 1 wb/ $m²$ and ions having a velocity of 0.4 \times 10⁷ m/sec pass undeflected, find the electric field in the velocity selector. $0.4 \times 10^{7} \times 10^{9}$ = 1 1×10^{7}

$$
Data: v = 0.4 \times 10 \text{ m/sec}, B = 1 \text{ WD/m}^2
$$

Formula:
$$
E = v \cdot B
$$

Solution: $E = 0.4 \times 10^7 \times 1 = 4 \times 10^6 \text{ V/m}$

Problem 3.2 : Singly ionised magnesium atoms enter a Bainbridge mass spectrograph with a velocity of 3 \times 10⁵ m/sec. calcuiate the radú of the paths folowed by the three most abundant isotopes of masses 24, 25, 26 when the magnetic flux density is 0.5 wb/m².

Data : v = 3×10^5 m/sec., B = 0.5 wb/m², q = 1.6×10^{-19}
Formula : R = $\frac{mv}{Bq}$

Formula:
$$
R = \frac{1}{R}
$$

$$
m_{24} = \frac{24}{6.02 \times 10^{28}} \text{ kg} = 3.987 \times 10^{-26} \text{ kg}
$$
\n
$$
R_{24} = \frac{M_{24} \cdot v}{B \cdot q} = \frac{3.987 \times 10^{-26} \times 3 \times 10^{5}}{0.5 \times 1.6 \times 10^{-19}}
$$
\n
$$
= 14.95 \times 10^{-2} = 0.1495 \text{ m}
$$
\nAs
\n
$$
R \approx m
$$
\n
$$
\therefore \frac{R_{24}}{R_{25}} = \frac{m_{24}}{m_{25}}
$$
\n
$$
= \frac{m_{25}}{24} \times 0.1495 = \frac{0.1557 \text{ m}}{0.1519 \text{ m}}
$$
\nSimilarly,
\n
$$
R_{26} = \frac{25}{24} \times 0.1495 = \frac{0.1557 \text{ m}}{0.1619 \text{ m}}
$$
\n
$$
= \frac{25}{24} \times 0.1495 = \frac{0.1619 \text{ m}}{0.1619 \text{ m}}
$$
\n
$$
= \frac{160 \text{ m}}{0.1619 \text{ m}}
$$

Problem 3.3 : A mixture of neon isotopes (Ne²⁰ and Ne²¹) is analysed using a Bainbridge mass spectrometer. Calculate the linear separation of isotopes when the field acting on the $\vert \cdot \vert$ Nuclear size is about 10^{-15} m and the atomic size is velocity selector is 80 kV/meter and the magnetic flux density is 0.55 weber/m.

Data : $E = 80$ kV/meter; $B = 0.55$ weber/m²

mv

F.

Formulae : $v = \frac{a}{B}$, $R = \frac{ma}{Bq}$	Example	
Solution:	\n $R = \frac{m(E/B)}{Bq} = \frac{m E}{q B^2}$ \n	Example
1. 20	1. 20	
2. 20	1. 20	
3. 3195 × 10 ⁻²⁶ kg	1. 20	
3. 3195 × 10 ⁻²⁶ kg	1. 20	
4. 20	1. 20	
5. 20	1. 20	
6. 22	1. 20	
7. 20	1. 20	
8. 20	1. 20	
9. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20	1. 20	
1. 20		

EXAMPLEMIG PROBLEMS
\n**Problem 3.1 :** In a Bainbridge mass spectrometer, if the
\nmagnetic field in the velocity selector is 1 wby/m² and ions
\nhaving a velocity of 0.4 × 10⁷ m/sec. pass undefined, find
\nthe electric field in the velocity selector.
\n**Data :**
$$
v = 0.4 \times 10^7
$$
 m/sec. $B = 1$ wh/m²
\n**Formula :** $E = v \cdot B$
\n**Solution :** $E = 0.4 \times 10^7 \times 1 = \frac{4 \times 10^6 \text{ V/m}}{8 \times 10^4 \text{ W/m}^2}$
\n**Problem 3.2 :** Simply ionised magnesium atoms enter a
\nBainbridge mass spectrograph with a velocity of 3 × 10⁴
\n m/sec . Calculate the radii of the paths followed by the three
\nmost abundant isotopes of masses 24, 25, 26 when the
\nmagnetic flux density is 0.5 wby/m².
\n**Data :** $v = 3 \times 10^5$ m/sec, $B = 0.5$ wh/m², $q = 1.6 \times 10^{-19}$
\n**Formula :** $R = \frac{mv}{Bq}$
\n**Formula :** $R = \frac{mv}{Bq}$
\n**Example 3.2 :** $R_{20} = \frac{mv_1}{m_{20}} \cdot R_{20} = R_{20}$
\n $= \left(\frac{m_{21}}{m_{20}} - 1\right) R_{20}$
\n $= \left(\frac{21}{20} - 1\right) \times 0.0549 = \frac{0.0549}{20}$
\n**Formula :** $R = \frac{mv}{Bq}$
\n**Example 3.3 :** Using the point of the paths followed by the three
\n*Example 4* and *1* is 0.5 m/ssc. 24 , 25, 26 when the
\n*Example 5*
\n $= \left(\frac{m_{21}}{m_{20}} - 1\right) R_{20}$
\n $= \left(\frac{21}{20} - 1\right) \times 0.0549 = \frac{0.05$

Solution : Mass of single ionised atom of Mg i.e. The separation on the photographic plate is double that of the radii difterence.

 $\overline{6}$ $\overline{3}$ $\overline{2}$ $\overline{3}$ Linear separation of isotopes on the photographic

$= 2 \times 0.00275 = 0.0055$ m
3.6 INTRODUCTION TO NUCLEAR PHYSICS

- Rutherford, from his experiment on scattering of α -particles, suggested that an atom consists of a central nucleus surrounded by extra-nuclear electrons. 25
- The nucleus is positively charged and this charge is due to the protons present in the nucleus. The number of
protons in the nucleus of an atom gives the atomic number 'Z' of the element to which the atom belongs.
- The nucleus also contains neutrons, which are electrically neutral. The number of neutrons in the nucleus is given by $A - Z$, where, 'A' is the mass number of the element
- about 10^{-11} m.
- An atom is electrically neutral, so the number of extranudlear electrons in an atom is always equal to the number of protons in the nucleus.
- number 'A' and the atomic number 'Z' of the element.
- Nuclei of mass number between 25 and 85 are called intermediate nuclei and those of mass number above 85 are called as heavy nuclei.

ENGLISHED (LATURE CHANNEL CHAN

- the nucleus e.g. for sodium, $Z = 11$, $A = 23$. So number into another is known as disintegration or of protons in sodium nucleus is 11 and number of transmutation of elements.
neutrons is 12
- Hence the neutron-proton ratio (n : p) for sodium is nearly equal to unity. Such nuclei, for which n : p ratio
is nearly unity, are called stable nuclei. Light nuclei are stable. But with increase of mass number, the number of neutrons exceeds that of protons and n: p ratio exceeds unity. Such nuclei, for which n : p ratio exceeds | . Alpha particles from natural radio nuclides were found 15, are called unstable nuclei.
- Heavy nuclei are unstable. e.g. for $_{92}U^{238}$, A = 238, $Z = 92$. Hence, n: p ratio is more than 1.5. So uranium is unstable. It exhibits radioactivity and disintegrates till stable end products are formed.
- some type of radiations that could affect a photographic plate wrapped in a thick black paper. It was found that these radiations are highly penetrating. they ionize gases and cause scintillations on a be radioactive.
 be radioactive.
 be radioactive.
- The substances which emit these radiations are said to
he radioactive a.g. uranium, radium, polonium, radon be radioactive. e.g. uranium, radium, polonium, radon,
etc. The phenomenon of spontaneous emission of radiation from a substance is called as Radioactivity. radiation from a substance is called as **Radioactivity.** $15^{p^{30}}$ is radioactive and it disintegrates as All naturally occurring elements with atomic numbers greater than 82 are found to be radioactive because their $\frac{n}{p}$ ratio exceeds 1.5.
- **P** (positron)

The nuclear mass is the weight of the nucleus and it is

equal to the discovery of artificial radioactivity.
 $\frac{1}{2}$ Such reactions led to the discovery of artificial radioactivity. protons present in the nucleus.
As the size of the nucleus is extremely small and its **A** radioactive material keeps on radiating particles like
- mass is very large, the nuclear density is enormousty high, about 10^{17} kg/m³. As the size of the nucleus is extremely small and its
- As mass of electron is negligible, the whole mass of an atom can be taken to be cancentrated in its nucleus.
- The ordinary chemical and physical properties of radiations some indirect method must be employed.

elements are to be attributed to peripheral electrons in \bullet When these radiations are passed through gases they their atoms. An atom can be singly ionized by removing one electron and it will then have one excess positive charge.
- When all the electrons of an atom are removed, the bare nucleus will be left behind witth ony the positve charge, and even then the atom still retains its $\left| \bullet \right|$ A G.M. counter uses a glass tube called G.M. tube individuality and intrinsic nature.
- When the nucleus itself is tampered with and its constituent particles are altered in kind and manner,

For elements of low mass number, the number of the original atom ceases to exist giving birth to a new protons is nearly equal to the number of neutrons in $\overline{}$ one. This phenomenon of conversion of one element

- When transmutation is provoked by artificial means, it is called as artificial transmutation. It seemed possible that if atoms were bombarded with energetic particles, one of the latter might penetrate into a nucleus and cause transmutation.
- to be effective for causing transmutation because of their relatively large energy and momentum. To reduce the probability of scattering of bombarding alpha partides and to increase the probability of disintegration, lighter elements were used as targets.
- Henry Becquerel discovered that uranium gave out $\|\cdot\|$ The first artificial transmutation reaction observed by Rutherford was, when nitrogen was bombarded with a-partides. This transmutation can be represented as, $_7N^{14} + _2He^4 \rightarrow [{}_6F^{18}] \rightarrow {}_8O^{17} + _1H^1$

Some of the artihcially transmuted elements were found to

$$
e.g._{19}Al^{27} + {}_2He^4 \rightarrow [{}_{15}P^{31}] \rightarrow \frac{1}{15}P^{30} + {}_0n^1
$$

$$
15^{p^{20}} \rightarrow 14^{5i^{20}} + 1^{e^0} + \nu
$$
 (neutrino)

- α , β and γ , which cannot be sensed by humans directly. But their presence affects humans directly as well as indirectly, so their measurement becomes essential.
- For detecting and measuring intensity of these
radiations some indirect method must be employed.
- have ability to ionise them. This property of the radiations can be employed to detect them.
- The commonly used radiation detectors are ionisation chamber, proportion counter, Geiger-Muller (G.M.)
counter, cloud chamber etc.
- along with electrical circuits, needed to amplify the current and display it. The tube consists of a rugged metal case enclosed in the glass tube.

- The hollow metal case acts as cathode. A fine metal wire passing through the centre of the tube acts as anode. The tube is evacuated and then filled with \uparrow
mixture of Argon (90%) at 10 cm pressure and ethyl \downarrow Counts
alcohol vanour (10%) at 1 cm pressure. One end of the alcohol vapour (10%) at 1 cm pressure. One end of the minutes had minutes the minutes the minutes had the minu tube is enclosed with a thin sheet of mica which serves as window for radiations.
- between metal case (cathode) and the wire (anode). The voltage is adjusted below the break down voltage of the gas. Fig. 3.5 shows schematic arrangement of $\left| \bullet \right|$ Ethyl alcohol vapour is used to prevent undesirable

- When a high energy particle enters the G-M tube it the tube.
incises one or more argon atoms. The electron will be $\overline{\textbf{3.8 INTRODUCTION TO QUANTUM}}$ incises one or more argon atoms. The electron will be 3.8 INTRODUCTI
attracted by anode wire whereas positive ions will be **MECHANICS** attracted by negative of the supply. These moving
charges further ionises the argon atoms.
is the conception of quantum mechanics. The quantum
- pulse through resistance R produces a voltage pulse of the order of 10 uV. An electronic pulse amplifier amplifies this weak voltage pulse to a voltage value between 5 to 50 V. Newton showed that the motion of planets and the
-
- The Fig. 3.6 shows a graph of counts per minute as a \cdot It was earlier believed that the heat is some peculiar
- Above 1200 V the number of counts remain constant Above 1200 v the number of counts ternant constant.

For a long time, the phenomena of electricity,

Region. The plateau region is used for normal

operation of G-M counter.

Operation of G-M counter.
 $\frac{1}{2}$ a long tim

O

Fig. 3.6: Characteristics of G-M cour

- G-M counter.

Metal tube Metal tube can count upto 500 marticles per second particles per second.
	- The main drawback of G-M counter is the Dead Time, the time taken by the tube to recover between counts.
	- The **Dead Time** of G-M counter is about 200 μ s. If the radiation density is high, the tube will not have time to recover and hence some of the particles may not be counted.
	- The G-M counter can be used to count β and Fig. 3.5: G-M counter \vee -radiations and α -particles with some modifications in

- As a result of this a current pulse will pass. This current mechanics is better than Newtonian classical mechanics
pulse through resistance R produces a voltage pulse of in explaining the fundamental physics. There was big development in physics between the time of Newton and the time of quantum mechanics.
- free fall of an object on earth is governed by the same These amplified pulses are applied to a counter. As
each incoming radiation produces a pulse of current,
This was in contrast to ancient helief that the world of each incoming radiation produces a pulse of current.
the earth and heaven is onverted the counted the earth and heaven is onverned by different laws the earth and heaven is governed by different laws.
- function of voltage for voltages less than 1000 V. There substance called Caloric, which flows from a hot object is no discharge and hence will show zero count. to a cold object. But latter it was proved that the heat is between 1000 V to 1200 V the number of pulses are the random motion or vibration of constituents of proportional to the voltage.

unified.

unified.
	- century, Faraday and Maxwell along with others unified

ENGINEERING PHYSICS (BATU) 3.8) ELECTRON OPTICS, NUCLEAR PHYSICS ...
these independent branches of physics. They proved \bullet The other main difference is the quantized energy that all three phenomena are manifestations of state. In classical physics, an oscillating body can
electromagnetic field.

- The simplest example is the electric field of an electric charge that exerts a force an another charge when it comes in the range. An electric current produces a
magnetic field that exerts a force on magnetic $\frac{3.8.2 \text{ Need of Quantum Mechanics}}{Classical mechanics successfully even}$
- light. Finally, Einstein unified space, time and gravity in
- Quantum mechanics also unified two branches of other phenomena which classical mechanics failed to science : physics and chemistry.
- In previous developments in physics, fundamental emission of X-rays, etc.

emission of X-rays, etc. experience, such as particle, position, speed, mass, $\frac{1}{200}$ with experience solved by Max Planck in force. energy an force, energy and even field. These concepts are referred as Classical.
- The world of atoms cannot be described and
understood with these concepts. For atoms and molecules, the ideas and concepts used in dealing with objects in day to day life is not sufficient. Thus, it . This is known as **Quantum Hypothesis** and marked atoms.
A group of scientists W. Heisenberg. E. Schrodinger.
3.9 HEISENBERG'S UNCERTAINTY PR
- conceived and formulated these new ideas in the beginning of 20^{th} century. This new formulation, a \bullet One of the tacit assumptions of classical physics, that branch of physics, was named as Quantum Mechanics.

- The classical physics is complete and beautiful in
explaining daily experiences where big bodies are involved. But it breaks down severely at subatomic level and failed to explain some of the phenomenon totaly.
- explain are black body radiation, photoelectric effect,
emission of X-rays, etc.
-

assume any possible energy. On the contrary, quantum mechanics says that it can have only discrete non-zero energy

- magnetic inetic strate of the content of the motions of object which are observable directly or by Such fields can travel through space, independent of or object which are observable unecay or by the space, independent of an instruments like microscope. But when classical charge and magnet, in the form of electromagnetic entity instruments like microscope. But when classical charge and magnetic evels it wave. The best example of electromagnetic wave is mechanics is applied to the particles of atomic levels, it
light Finally Finatele unified cases time and gravity in fails to explain actual behaviour. Therefore, the classi his theory of relativity.
his theory of relativity.
	- explain are black body radiation, photoelectric effect,
	-

$$
E = nhv
$$

where, $n = 0, 1, 2, ...$

h = Planck's constant = 6.63×10^{-34} J/s

needed new concepts to understand the properties of sthe concepts of modern physics. The whole

A group of scientists W. Heisenberg, E. Schrodinger. 3.9 HEISENBERG'S UNCERTAINTY PRINCIPLE
P.A.M. Dirac, W. Pauli, M. Born and Neils Bohr, [May 18]

- the position of a mechanical system can be uniquely determined without disturbing its motion, is valid only 3.8.1 Limitations of Classical Mechanics
for the motion of a body of ordinary size, like a cricket ball.
But if one is considering the motion of an atomic
	- particle, like an electron, a certain uncertainty is unavoidably introduced into the experimenta measurement of its position and mornentum.
	- The phenomena which classical physics failed to \bullet This uncertainty is not due to the imperfection of the explain are black body radiation, photoelectric effect, measuring instruments but is something inherent in the nature of a moving body.
	- In classical physics, a body which is very small in $\begin{array}{|l|l|} \hline \bullet & \text{The fact that a moving body must be regarded as a De} \end{array}$ comparison with other body is termed as **Particle.**
Whereas in quantum mechanics, the body which
cannot be divided further is termed as **Particle**.
accuracy with which we can measure its particle
properties.

ENGINEERING PHYSICS (BATU

(3.9) **ELECTRON OPTICS, NUCLEAR PHYSICS** ...

A De Broglie wave group is shown in Fig. 3.7 (a). The $\|\bullet\|$ To observe the electron we have to illuminate it with particle may be anywhere within the group. For a very narrow wave group, as in Fig. 3.7 (b), the position of the particle can be readily found, but the wavelength λ ,

establish.
For a wide wave group, as in Fig. 3.7 (c), the **changed.** The precise change of the momentum of the electron wavelength and hence momentum estimate is satisfactory, but then the location of the position of the particle becomes uncertain.

particle becomes uncertain. $\frac{h}{\lambda}$. Thus,

- Fig. 3.7
The answer to this question was given by Heisenberg in 1927, when he put forth the uncertainty principle. Statement:
- impossible to determine accurately and simultaneously
the values of both the members of a pair of physical variables which describe the motion of an atomic \bullet The product of uncertainty in position measurement Δx system. Such pairs of variables, like position x and momentum p; or energy E and time t, are called canonically conjugate variables,
- To examine the uncertainty principle, consider an electron of mass m associated with matter waves of electron of mass m associated with matter waves of
wavelength λ. This electron can be found somewhere within this wave and therefore, the uncertainty in its wavelength λ . This electron can be found somewhere
within this wave and therefore, the uncertainty in its i.e. $\Delta x \cdot \Delta p \ge \frac{\hbar}{4\pi}$
position measurement Δx is equal to its wavelength λ .

- light, say of wavelength λ , as in Fig. 3.8. In this process, photons of light strike the electron and bounce off it.
	- Each photon possesses the momentum $\frac{h}{\lambda}$ and when it
- and hence the momentum $p = \frac{h}{\lambda}$, is impossible to collides with the electron, original momentum p of the electron.
	- cannot be predicted, but it is likely to be of the same
		-
		- the electron cannot be observed without changing its momentum by an indeterminate amount
	- The act of measurement of its position introduces an uncertainty in its momentum Ap and this uncertainty in the momentum is at least equal to the momentum of incident photon \mathbf{r}

$$
\therefore \quad \Delta p = \frac{n}{\lambda} \quad \dots (3.17)
$$

From equations (3.16) and (3.17),

$$
\Delta x \cdot \Delta p = \lambda \cdot \frac{h}{\lambda} = h \qquad \qquad \dots (3.18)
$$

- Intertoon the also the quation (3.18) that if the position of the electron is known exactly at any given instant, i.e. if $\Delta x = 0$, then the momentum becomes indeterminate Heisenberg's uncertainty principle states that, it is | and vice-versa. Thus, both the position and the momentum cannot be determined accurately and simultaneously.
	- of a body at some instant and the uncertainty in its momentum measurement Δp at the same instant is at best equal to the Planck's constant h (more correctly $\frac{\mathbf{h}}{\mathbf{h}}$,

$$
4\pi
$$

i.e.
$$
\Delta x \cdot \Delta p \ge \frac{1}{4\pi}
$$

This is Heisenberg's uncertainty principle

```
3.9.1 Uncertainty Principle Applied to the Pair of
     Variables
```
photon **by Reflected Container Structure Energy and time form another pair of canonically conjugate variables. Consider again the** canonically conjugate variables. Consider again the Problem of an electron of mass m moving with velocity v. We can wnte the K.E. of the electron as

its momentum by an indeterminate amount $E = \frac{1}{2}mv^2$ (3.19)

ENGINEERING PHYSICS (BATU)

The uncertainty in the energy measurement AE can be All the electrons producing the diffraction patterm on

found by differentiating equation (3.19), assuming the screen have passed through the found by differentiating equation (3.19), assuming the screen have passed through the slit, but we cannot mass to be constant. $\mathcal{G}_\mathbf{a}$

$$
\Delta E = v \text{ (m} \cdot \Delta v)
$$

$$
\Delta E = v \cdot \Delta p
$$

$$
\Delta x
$$

$$
\Delta E = \frac{\Delta F}{\Delta t} \cdot \Delta p \qquad (\because v = \frac{\pi}{4})
$$

Hence $\Delta E \cdot \Delta t = \Delta x \cdot \Delta p$

But by Heisenberg's uncertainty principle,

$$
\Delta x \cdot \Delta p \ge \frac{h}{4}
$$

$$
\Delta E \cdot \Delta t \ge \frac{h}{4}
$$

and time measurements is of the order of Planck's $\left| \bullet \right|$ So the uncertainty in momentum measurement along constant.

3.9.2 Illustration of Uncertainty Principle (May 19)
(1) Diffraction at a Single Slit

Diffraction at a Single Slit Δp_y =
Consider a narrow beam of electrons passing normally
through a single vertical narrow slit of width Δy and Δp_y = through a single vertical narrow slit of width Ay and producing a diffraction pattern on the screen.
(See Fig. 3.9)

Fig. 3.9 : Diffraction of electrons at a single slit

We know that the positions of minima in the diftraction pattern due to a slit of width a formed by incident light of wavelength A are given by

relengtn A are given by

\n
$$
\begin{array}{ccc}\n\text{a sin } \theta & = & n\lambda \\
\text{a sin } \theta & = & n\lambda\n\end{array}
$$
\nQ is the angle of derivative of n^{th} order minimum.

\n
$$
\begin{array}{ccc}\n\text{a sin } \theta & = & n\lambda \\
\text{b sin } \theta & = & n\lambda\n\end{array}
$$

where θ is the angle of deviation of nth order minimum in the ditfraction pattern.

So if the first order minimum in the diffraction pattern due to a slit of width Δy is formed for an angle θ , when electron waves of wavelength à are diffracted by it, we shall have

say definitely at what position of the slit. So the $\Delta E = \frac{1}{2} m \cdot 2 \times \Delta v$ uncertainty in position determination of electrons is equal to the width Ay of the slit, and from equation (3.21, we have

$$
\Delta y = \frac{\lambda}{\sin \theta} \qquad \qquad \dots (3.22)
$$

 $\frac{\Delta x}{\Delta t}$ **e** Electrons are initially moving along positive x-axis. Their momentum along x-axis is $\frac{h}{\lambda}$ and they do not

- have any component of momentum along y-axis.
- $\frac{1}{x}$ **But after diffraction at the slit, electrons are deviated** from their initial path to form the diffraction pattern, $\Delta E \cdot \Delta t \ge \frac{\Delta}{4\pi}$ and the y-component of their momentum may be
This means that the product of uncertainties in energy between $\frac{h}{\lambda} \sin \theta$ and $-\frac{h}{\lambda} \sin \theta$ (See Fig. 3.9).
and time measurements is of the order of
	- y direction is given by

$$
ap_y = \frac{h}{\lambda} \sin \theta - \left(-\frac{h}{\lambda} \sin \theta \right)
$$

$$
\Delta p_y = \frac{2 h}{\lambda} \sin \theta \qquad \qquad \dots (3.23)
$$

From equations (3.21) and (3.22), we have $\frac{3.21}{2.21}$

$$
\Delta y \cdot \Delta p_y = \frac{\lambda}{\sin \theta} \cdot \frac{2 \, h}{\lambda} \sin \theta = 2h
$$

i.e. $\Delta y \cdot \Delta p_y \geq h$

Thus, the product of uncertainties in position and momentum measurements of the electron is of the
xaxis order of Planck's constant, which is Heisenberg's order of Planck's constant, which is Heisenberg's uncertainty principle

(2) Why an Electron cannot Exist In the Nucleus

IMay 18]
Fithe electrons had to exist inside the nucleus then its De-Broglie wavelength should be roughly of the order of nucleus diameter i.e. 10^{-14} m.

Therefore, the corresponding momentum will be
\n
$$
p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{10^{-14}} = 6.63 \times 10^{-20} \text{ kg-m/sec}
$$
\n
$$
\therefore E = \frac{p^2}{2m} = \frac{(6.63 \times 10^{-34})^2}{2 \times 9.1 \times 10^{-31}} = 2.42 \times 10^{-9} \text{ J}
$$
\n
$$
= \frac{2.42 \times 10^{-39}}{1.6 \times 10^{-19}} \text{ eV} = 15095 \text{ MeV}
$$

If the electron had to exist in the nucleus then its energy should be 15095 MeV. However, this is greater than the maximum binding energy of the nucleus. $\Delta y \sin \theta = 1 \cdot \lambda$... (3.21) in the maximum circuity chief incomplexity in the nucleus.

l.in

ENGINEERING PHYSICS (BATU)

Problem 3.4 : In an experiment, the wavelength of a photon is measured to an accuracy of one part per million. What is the uncertainty Δx in a simultaneous measurement of the position of the photon having a wavelength of 6000 A°? Data: $\lambda = 6000 \text{ A}^{\circ} = 6000 \times 10^{-10} \text{ m}, \text{ h} = 6.6 \times 10^{-34} \text{ J}$ sec $\frac{\Delta\lambda}{\lambda} = \frac{1}{10^6}$

Formulae: $\Delta p = \frac{h}{\Delta \lambda}$, $\Delta x \cdot \Delta p \approx h$ $\Delta p = \frac{6.6 \times 10^{-34}}{6000 \times 10^{-16}}$ Solution: = 1.1×10^{-21} kg-m/sec $\Delta x = \frac{h}{\Delta p} = \frac{6.6 \times 10^{-34}}{1.1 \times 10^{-21}} = \boxed{6 \times 10^{-13} \text{ m}}$

Problem 3.5 : In order to locate the electron in an atom within a distance of 5×10^{-12} m using electromagnetic waves, the wavelength must be of the same order. Calculate the energy and momentum of the photon. What is the corresponding uncertainty in its momentum? $\lambda = \Delta x = 5 \times 10^{-12}$ m Data -

Formulae:
$$
p = \frac{h}{\lambda}
$$
, $E = \frac{hc}{\lambda}$, $\Delta p_x = \frac{h}{\Delta x}$

\nSolution: $p = \frac{6.6 \times 10^{-34}}{5 \times 10^{-12}} = 1.32 \times 10^{-22} \text{ kg-m/sec}$

\n $E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5 \times 10^{-12}}$

\n $= 3.96 \times 10^{-14} \text{ J}$

\n $\Delta p_x = \frac{6.6 \times 10^{-34}}{5 \times 10^{-12}}$

\n $= \frac{1132 \times 10^{-22} \text{ kg-m/sec}}{1.32 \times 10^{-22} \text{ kg-m/sec}}$

Problem 3.6 : Compute the uncertainty in the location of a 2 gram mass moving with a speed of 1.5 m/sec. and the minimum uncertainty in the location of an electron moving with a speed of 0.5 \times 10⁸ m/sec. Given, $\Delta p = 10^{-3} p$. **Data:** $v_e = 0.5 \times 10^8$ m/sec, $\Delta p = 10^{-3} p$, m = 2 grams

$$
= 2 \times 10^{-3} \text{ kg},
$$

\n
$$
\text{v for the body} = 1.5 \text{ m/sec}
$$

\n
$$
\text{mula}: \Delta x \Delta p = h
$$

\n
$$
\text{ution}: \text{(i) For the body,}
$$

Formula

Solution

 $\Delta p = 10^{-3} p = 10^{-3}$ (mv) $\Delta x \cdot \Delta p = h$

ELECTRON OPTICS, NUCLEAR PHYSICS ...

$$
\Delta x = \frac{h}{\Delta p} = \frac{6.6 \times 10^{-34}}{10^{-3} \times 2 \times 1.5 \times 10^{-3}}
$$

$$
= \frac{2.2 \times 10^{-28} \text{ m}}{2.2 \times 10^{-28} \text{ m}}
$$

(ii) For the electron,

 (3.11)

$$
\begin{array}{rcl} \Delta x & = & \frac{6.6 \times 10^{-34}}{10^{-3} \times 9.1 \times 10^{-31} \times 0.5 \times 10^{8}} \\ & = & \boxed{1.45 \times 10^{-8} \, \text{m}} \end{array}
$$

It can be seen that the uncertainty associated with a microscopic body is very large and therefore, it plays a significant role in measurements.

Problem 3.7 : Assume that the uncertainty in the location of a particle is equal to its De Broglie wavelength. Show that the uncertainty in its velocity is equal to its velocity.

Data:
$$
\Delta x = \lambda
$$

\n**Formula:** $\Delta x \cdot \Delta p = h$
\n**Solution:** $\Delta x \cdot m \Delta v_x = h$
\n $\Delta v_x = \frac{h}{\Delta x \cdot m} = \frac{h}{m \lambda}$
\nUsing $\lambda = \frac{h}{mv}$
\nwe have $\Delta v_x = \frac{h \cdot m \cdot v}{mh} = v$

Problem 3.8 : An electron is confined to a box of length 1 A^e Calculate the minimum uncertainty in its velocity, given mass of electron = 9.1×10^{-31} kg, h = 6.6×10^{-34} J-sec. **Data:** $\Delta x = 1$ A° = 10⁻¹⁰ m, h = 6.6 × 10⁻³⁴ J-sec, $m = 9.1 \times 10^{-31}$ kg **Formula:** $\Delta x \Delta p_x = h$ **Solution:** $(\Delta x)_{\text{max}}$ $(\Delta p_x)_{\text{min}} = h$

 $(\Delta x)_{\text{max}} (\Delta y)_{\text{min}} = h$

$$
(\Delta v)_{\text{min}} = \frac{h}{m \Delta x} = \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{-10}}
$$

$$
= \boxed{0.725 \times 10^7 \text{ m/sec.}}
$$

This is comparable to the speed of the electron and is therefore very large.

Problem 3.9 : Calculate the minimum uncertainty in the velocity of an electron confined to a box of length 10 Aº. **Data:** L = $10 A^{\circ}$ = 10×10^{-10} m **Formula:** $\Delta x \cdot \Delta p_X = h$

ENGINEERING PHYSICS (BATU) (3.12) ELECTRON OFTICS, NUCLEAR PHYSICS ...

$$
\Delta v_x = \frac{h}{m \cdot (\Delta x)_{max}} = \frac{6.6 \times 10^{-34} \text{
$$

$$
0.725\times10^6\ \text{m/sec.}
$$

an accuracy of 0.005 %. Calculate the uncertainty with which affected by the wave. Suppose the wave is
we can locate the position of the electron.

$$
Data: \qquad \qquad v = 600 \text{ m/sec}
$$

$$
\Delta v = 0.005 % \text{ of } v
$$

= $\frac{0.005}{100} \times 600 \text{ m/sec}$

Formula : $\Delta x \cdot \Delta p = h$

$$
\Delta x = \frac{h}{\Delta p} = \frac{h}{m \Delta v}
$$

$$
= \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31}} \times \frac{0.005}{100} \times 600
$$

$$
9.1 \times 10^{-31} \quad 100 \quad \hat{}
$$

$$
= 0.024 \text{ m}
$$

B.10PHYSICAL SIGNIFICANCE OF WAVE THE SIGNIFICANCE OF WAVE the origin will be FUNCTION

- A wave motion appears in almost all branches of physics. A wave motion is defined as a periodic **produce the contract of the contract of the contract of the contra**
d²y disturbance travelling with finite velocity through a mediurn or space.
- The simplest form of vibration is simple harmonic motion (S.H.M.) and a particle executing S.H.M. acts as
-
- physical properties into mainly three categories
	-
	- \geq Matter waves which give the probability amplitude of finding a particie at a given position and time.
	- **Mechanical Waves**: The mechanical waves are **Hence, it is called Probability Amplitude**.

	simplest one to understand because they are **.** However, a probability is always real and positive, taken which is always positive. In general, ψ is complex, which we can see.

Solution : $(\Delta x)_{\text{max}}$ (Δp_x) min = h When a mechanical wave passes through a medium, i.e. $(\Delta x)_{\text{max}}$ m(Δv_x)_{min} = h i.e. (Δx)max m(Δv_x)_{min} = h i.e. (Δx)max m(Δv_x)_{min} = h i.e. (Δx)max m(Δv_x)min = h i.e. (Δx)max m(Δv_x)min = h i.e. (Δx)max m(Δv_x)min = h i.e. (Δx)min equation

- where A is the anplitude of the oscillation and $\omega = 2\pi v$, where v is the frequency.
- **Problem 3.10** : An electron has a speed of 600 m/sec with \triangleright This equation is applicable to all individual particles an accuracy of 0.005 %. Calculate the uncertainty with which affected by the wave. Suppose the wave we can locate the position of the electron.
 $V = 600$ m/sec 11 wave, then a particle at Q at a distance x from P will receive the wave x/v sec later
 $\Delta v = 0.005$ % of v than P did.

Fig. 3.10 : Progressive wave moving with velocity v
• Hence, its displacement at time t and distance x from

3.10.1 Concept of Wave Function
$$
y = A \cos \omega \left(t - \frac{x}{y} \right)
$$
 ... (3.25)
\n• A wave motion appears in almost all branches of
\nThe wave equation of such a wave is

$$
\frac{d^2y}{dt^2} = v^2 \frac{d^2y}{dx^2}
$$
 ... (3.26)

The solution of equation (3.26) is given by

$$
y = Ae^{-i\omega(t - x/v)}
$$
 ... (3.27)

- a source which radiates waves.
The wave motion provides a way for energy and the transverse displacement of y. Similarly, for light The wave motion provides a way for energy and \vert the transverse displacement of y. Similarly, for light momentum to move from one place to another waves the field vectors E and B vary in space and time, momentum to move from one place to another waves the field vectors E and B vary in space and time, In
without material particles making that journey. The for sound waves, pressure P varies in space and time. In The waves can be classified according to their broad the same way, for matter waves, the wave function w
- EEETT THE THE MELTAN MULTIMETRY AND SO WE IN WAVE MECHANICS IS analogous to electric field E

Flectromagnetic waves or to pressure P in the sound

meldium to propagate. in electromagnetic waves or to pressure P in the sound waves. However, ψ itself unlike E and P has no direct physical significance, but gives a measure of the probabillity of finding a particle at a particular position.
	- produced by some sort of mechanical vibrations whereas ψ can be positive or negative. Therefore, ψ^2 is

Ť

ENGINELUNG PHYSICS (8ATU)

 (3.13)

ELECTRON OPTICS, NUCLEAR PHYSICS ...

therefore, one takes $|\psi|^2$ instead of ψ^2 , where $|\psi|^2 = \psi^*$ Ψ , Ψ^* denoting the complex conjugate of Ψ . In any case, ψ^* ψ is always real and positive.

If dv is a volume element located at a point, then the probability of finding the particle in the volume element at time t is proportional to ψ^* wdv. By analogy with ordinary mass density, the square of the wave function $\psi^* \psi$ is called the **Probability Density** i.e. $\begin{vmatrix} x, y, z \\ -A \end{vmatrix}$ function ψ satisfying this relation is called a Probability Per Unit Volume.

3.10.2 Physical Significance of the Wave Function known
• Schrodinger interpreted **y** in terms of charge density. If to be a A is the amplitude of an electromagnetic wave, then the energy per unit volume, i.e. energy density is equal to A². Also, the photon energy hu is constant. So the number of photons per unit volume, i.e. the photon density is equal to $\frac{A^2}{hu}$, and it is proportional to the amplitude square.

Similarly, if ψ is the amplitude of matter waves at any

- point in space, the particle density at that point may be taken as proportional to $|\psi|^2$. So $|\psi|^2$ is a measure of particle density and on multiplying this by the charge of the particle, we shall get the charge density. Thus, defined.

Ivi² is a measure of **Charge Density**.

According to Max Born, the value of $|\psi|^2$ at a point at a schrodinger started with De Broglie's idea of matter
- given time is related to the probability of finding the body described by its wave function *at that point at* that instant. A large value of $|\psi|^2$ means a strong possibility of the presence of the body, while a smal value of $|\psi|^2$ means a slight possibility of its presence. As long as $|\psi|^2$ is not actually zero somewhere, there is a definite chance, however small, of detecting the body there.
- out in space, this does not mean that the particle itself **.** According to De Broglie's theory, a particle of mass m Although the wave function ψ of a particle is spread is also thus spread out. When an experiment is performed to detect a particle, an electron for instance whole electron is either found at a certain place and time, or it is not There is nothing like 20 % of an electron. However, it is certainly possible that there is and time, and it's likelihood that is specified by $|\psi|^2$ or $\Psi\Psi^*$, Ψ^* being the complex conjugate of Ψ .
 $\Psi\Psi^2$ or $\Psi\Psi^*$ is taken as the probability density, i.e. the
- probability of Finding the particle in unit volume. So the probability of the partice being present in a volume

element dx-dy-dz is $\frac{1}{2}$ dx dy dz. Then, the wave function ψ is called the **Probability Density Amplitude**.

Since the particle is certainly to be found somewhere in space, we must have,

 $JJJ \cdot \omega^2 dx dy dz = 1$... (3.28) the triple integral extending over all possible values of Y, 2

Normalised Wave Function and equation (3.28) is known as the Normalisation Condition. Thus, w has to be a normalisable function.

Besides being normalisable, w must also satisfy the following conditions:

- \triangleright Must be a single valued function, because ψ is related to the probability of finding the partide at a given place and time, and the probability can
have only one value at a given point and time.
- \triangleright Must be finite, because the particle exists somewhere in space, and so integral over all space must be finite.
- And its derivatives $\frac{\partial \Psi}{\partial x}$, $\frac{\partial \Psi}{\partial y}$, $\frac{\partial \Psi}{\partial z}$ must be ⋗ continuous everywhere in the region where ψ is

- waves and developed it into a mathematical theory known as Wave Mechanics. Schrodinger's wave equation is the mathematical representation of matter waves associated with a moving particle. There are two types of Schrodinger's wave equations :
	- 1. Schrodinger's time independent wave equation
2. Schrodinger's time dependent wave equation.
	-
- 3.11.1 Schrodinger's Time Independent Wave
Equation [Decs 17, 18, May 19]

moving with a velocity v has a wave system of some kind associated with it and its wavelength is given by

 $\lambda = \frac{h}{mv}$. The waves are produced only when something

- oscillates. Though we do not know the quantity that 20 % chance that the electron be found at that place vibrates to produce the matter waves, but we can and time, and it's likelihood that is specified by $|\psi|^2$ or indicate that quantity by ψ .
	- ٠ The periodic changes in ψ produce the wave system associated with the particle, just as the periodic changes in the displacement y of a string produce a wave system along the string.

- **ENGINEERING PHYSICS (8ATU)** 3.14) **ELECTRON OPTICS, NUCLEAR PHYSICS** ...

 In quantum mechanics, ψ corresponds to the displacement y of wave motion in a string. However, ψ , $\frac{4 \pi^2 p^2}{\gamma^2 \psi + \frac{4 \pi^2 p^2}{h^2} \psi} =$ displacement y of wave motion in a string. However, ψ , unlike y, is not itself a measurable quantity and it may be complex. Consider a system of stationary waves associated with a particle. Let (x, y, 2) be the coordinates of the particle and let ψ denote the wave displacement of matter $\qquad \qquad$ $\therefore \qquad$ $E = \frac{1}{2}mv^2 + V$ waves at time t.
By analogy with the wave equation $\frac{d^2y}{dt^2} = v^2 \frac{d^2y}{dx^2}$ $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \text{or} & \text$ equation for a three-dimensional wave with wave $rac{\partial^2 \psi}{\partial t^2}$ = $u^2 \nabla^2 \psi$ where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian Operator. $\nabla^2 \psi + \frac{2m(E-V)}{\hbar^2} \psi = 0$... (3.39)
The solution of equation (3.29) is ie solution of equation (3.29) is $\psi(x, y, z, t) = \psi_0(x, y, z) e^{-i\omega t}$ 3.11.2 Schrodinger's Time Dependent Wave where Ψ_0 (x, y, z) represents the amplitude of the wave $\frac{1}{\sqrt{1-\frac{1}{n}}}$ Schrodinger's time independent wave equation is at the point considered. The position vector of a point whose Cartesian coordinates are (x, y, z) is given by \vec{r} = $x\hat{i}$ + $y\hat{j}$ + $z\hat{k}$ $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, $\hat{\mathbf{k}}$ being unit vectors along the axes. So equation (3.30) can be written as $\psi(\vec{r}, t) = \psi_0(\vec{r}) e^{-i \omega t}$... (3.31) waves at time t. If u be the wave velocity, then the equation (3.31) twice with respect to equation for a three-dimensional wave motion can be written as. (3.31) time t, we get and $\frac{\partial^2 \psi}{\partial t^2} = (-i\omega)^2 \psi_0(\overrightarrow{r})e^{-i\omega t}$
= $-\omega^2 \psi$... (3.32)
- $\therefore \nabla^2 \psi + \frac{\omega^2}{u^2} \psi = 0$ But $\omega = 2 \pi v$, and $u = v \lambda$

But $\omega = 2 \pi v$ and $u = v \lambda$
 $\omega = 2 \pi v$ and $\omega = 2 \pi v$ we get : Equation (3.33) becomes
 $\nabla^2 \Psi + \frac{4 \pi^2}{\lambda^2} \Psi = 0$ The De Broglie wavelength of the waves associated with the particle is given by $\lambda = \frac{h}{mv} = \frac{h}{p}$... (3.35) h $\omega = \frac{2\pi E}{h}$
- Substituting equation (3.35) in (3.36), we get ... (3.36) The total energy E of the particle is the sum of it's KE. $=\frac{1}{2}$ mv² and potential energy V $E = \frac{p^2}{2m} + V$ Substituting equation (3.37) in (3.36), we get for a three-dimensional wave with wave
 $\frac{\partial^2 \Psi}{\partial t^2}$ = $u^2 \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right)$
 $\frac{\partial^2 \Psi}{\partial t^2}$ = $u^2 \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right)$
 $\frac{\partial^2 \Psi}{\partial t^2}$ = Equation (3.38) is called Schrodinger's time independent wave equation'. ... (3.29) Taking $\hbar = \frac{h}{2\pi}$, equation (3.38) becomes

perator. $\nabla^2 \psi + \frac{2m(\xi - V)}{\hbar^2} \psi = 0$... **Equation** $\nabla^2 \Psi + \frac{8 \pi^2 m}{h^2} (E - V) \Psi = 0$... (3.40) The time dependent wave equation is obtained by eliminating E from the time independent equation. Consider a system of stationary waves associated with a particle. Let (% y. 2) be the coordinates of the particie and let ψ denote the wave displacement of the matter waves at time t If u be the wave velocity, then the $\frac{\partial \Psi}{\partial t} = -i \omega \psi_0(r) e^{-i \omega t}$
 $\frac{\partial^2 \Psi}{\partial t^2} = \psi^2 \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) = u^2 \nabla^2 \Psi \dots (3.41)$
 $\frac{\partial^2 \Psi}{\partial t^2} = (-i\omega)^2 \psi_0(r^2) e^{-i \omega t}$

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial$ is the 'Laplacian Operator'
The solution of equation (3.41) is From equations (3.29) and (3.32), we get $u^2 \nabla^2 \psi = -\omega^2 \psi$
 $u^2 \nabla^2 \psi = -\omega^2 \psi$ where ψ_0 (x, y, z) is the amplitude of the wave at the
	- \ldots (3.33) \rightharpoonup where ψ_0 (κ , \mathbf{y} , 2)
	- $\frac{\partial \psi}{\partial t} = (-i \omega) \psi_0(\vec{r}) e^{-i \omega t} = -i \omega \psi$... (3.43) Now, $\omega = 2\pi v$ and $E = hv$ or $v = \frac{E}{h}$

Putting this value of ω in equation (3.43), we get $2 \pi F$ \overline{a}

$$
\frac{\partial \psi}{\partial t} = -i \frac{2 \pi c}{h} \psi \qquad \qquad \dots (3.44)
$$

Multiplying both sides of equation (3.44) by i

$$
i\frac{\partial \psi}{\partial t} = i^2 \frac{2\pi}{h} E \psi
$$

$$
E \psi = i \frac{h}{2\pi} \frac{\partial \psi}{\partial t} = i \hbar \frac{\partial \psi}{\partial t} \qquad \dots (3.4)
$$

From equations (3.40) and (3.45), we get

$$
\nabla^2 \psi + \frac{8 \pi^2 m}{h^2} \left(\frac{i h}{2\pi} \frac{\partial \psi}{\partial t} - V \psi \right) = 0
$$

Multiplying both sides of this equation by $\frac{-h^2}{8\pi^2 m}$, we

ger

A

$$
-\frac{h^2}{8\pi^2 m} \nabla^2 \psi - \frac{ih}{2\pi} \frac{\partial \psi}{\partial t} + V \psi = 0
$$

\n
$$
\left(-\frac{h^2}{8\pi^2 m} \nabla^2 + V\right) \psi = \frac{ih}{2\pi} \frac{\partial \psi}{\partial t}
$$
...(3.46)
\nor
$$
\left(\frac{-h^2}{2m} \nabla^2 + V\right) \psi = i \hbar \frac{\partial \psi}{\partial t}
$$
...(3.47)

 Equation (3.47) i.e. Hy = Ey
Equation (3.47) is called 'Schrodinger's time dependent **Wave Function:** The variable quantity characterizing wave equation'.

Taking
$$
H = \left(-\frac{h^2}{8\pi^2 m} \nabla^2 + V\right) = \left(\frac{-h^2}{2m} \nabla^2 + V\right)
$$

and

 $E = \frac{ih}{2x} \frac{\partial}{\partial t} = i \hbar \frac{\partial}{\partial t}$ as **Eigen Operator**, equation (3.47) becomes

$$
H\psi = E\psi
$$

- e/m of an electron can be measured by Thomson's
- By using Millikan's method charge of an electron can **JJJJ**
be measured. be measured.
- Bainbridge Mass Spectrograph is a device used to (i) Detect the presence of isotopes, (ii) Find an accurate value of isotopic masses, (iii) Find their abundance.
Atomic Nucleus occupies a very small volume with a
- diameter of 10⁻¹⁴ m. It consists of Z protons and A-Z neutrons. Proton and neutrons are collectively caled as nucleons.
- Nuclear Force : Nucleons are held in the nucleus through short range nuclear forces.
- AMU: Masses of nucleons and nuclei are expressed in atomic mass units (amu)

 1 amu = 1.67×10^{-27} kg

- Mass Defect of a nucleus is the difference between its theoretical mass and its actual mass.
- A GM counter can be used for detecting α , β and γ radiations

ENGINEEKING PHYSICS(EATU) .15) LECTRON OPTICS, NUCLEAR PHYSICS

Helsenberg's Uncertainty Principle: It is impossible to determine precisely and simultaneously the values of both the members of a pair of physical variables which describe the motion of an atomic system. Such pairs of variables are called as canonically conjugate variables.
 $\Delta y : \Delta D \implies h$

(Heisenberg's uncertainty principle for position and 45) momentum.)

 $\Delta E \cdot \Delta t \geq h$

(Heisenberg's uncertainty principle for energy and ime.)

Schrodinger's Wave Equation: It is the mathermatical representation of matter waves associated with a moving partide. They are of two types

0 Schrodinger's time independent wave equation:

$$
\nabla^2 \psi + \frac{8\pi^2 m}{h^2} (E - V) \psi = 0
$$

(ii) Schrodinger's time dependent wave equation :

$$
\left(\frac{-h^2}{8\pi^2 m}\nabla^2 + V\right)\psi = \frac{ih}{2\pi}\frac{\partial \psi}{\partial t}
$$

$$
H\psi = E\psi
$$

- De Broglie waves is denoted by w and it is called the wave function of the particle. This wave function equation'.

Taking $H = \left(-\frac{h^2}{8\pi^2 m} \nabla^2 + V\right) = \left(\frac{-h^2}{2m} \nabla^2 + V\right)$ De Broglie waves is denoted by w and it is value function of the particle. This wave

contains all the information about the particle
	- **Probability Density:** The quantity $|\psi(x, y, z, t)|^2$, called the probability density or probability distribution function, determines the probability in unit volume of inding a particle at a given position at a given time.
	- \ldots (3.48) \blacktriangleright The Probability of a particle being present in a volume **SUMMARY** element dx-dy-dz is $|\psi|^2$ -dx dy dz. Normalization condition

The probability of finding the particle in all space is

$$
\iiint |\psi|^2 dx dy dz = 1.
$$

This is the normalization condition. A wave function ψ satisfying this relation is called a normalized wave function,

- The Wave Function should satisfy the following conditions:
	- (i) It should be a normalized function.
	- (ii) It should be a well behaved function i.e., single valued, tinite and continuous

IMPORTANT FORMULAE

e/m by Thomson's Method:

$$
\frac{e}{m} = \frac{e}{B^2} \cdot \frac{a}{ED \times OG}
$$

Millikan's Oil Drop Method:

$$
q = \frac{\sigma \pi \eta}{E} \left(\frac{g \eta v1}{2g (\rho - \sigma)} \right)^{1/2} (v_1 - v_2)
$$

ELECTRON OPTICS, NUCLEAR PHYSICS ...

experiment for location of a

of diffraction pattern with a

 $[6]$

 $[6]$

 $[6]$

 $[6]$

wave $[6]$

[6]

 $[3]$

 $[6]$

 (3.16)

ENGINEERING PHYSICS (BATU)

UNIT IV

CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

4.1 INTRODUCTION TO CRYSTAL STRUCTURE **AND X-RAYS**

- The atomic nature of matter has now been established Nature, however, is never perceived in the atomic form but manifests itself in either of the following forms : (i) Solid, (ii) Liquid, (iii) Gas, (iv) Plasma. The first three occur very commonly while plasma is assumed at elevated temperatures.
- Solid, liquid and gaseous states can be ditferentiated, superficially, upon certain features exhibited by them.
For example, solids possess definite shape, structure and volume, while liquids are devold of a definite shape but possess a definite volume. Gases possess $\vert \cdot \vert$ On extending this array of points in three dimensions,
- It can also be seen that the forms can be differentiated on the basis of their interatomic distance. In the solid $\parallel \cdot \parallel$ The position vector of any lattice point in two state, distances are of the order of a few Angstroms and there is some kind of order, whereas in liquid state there is a transition to a less ordered state In gaseous state, there is extreme disorder.
- When the atoms or molecules in a solid are arranged in a regular fashion then it is known as Crystalline, otherwise it is Amorphous. A crystal is a solid otherwise it is **Amorphous**. A crystal is a solid called the primitive vectors. \overline{T} is a translation vector
composed of a periodic array of atoms. Actual connecting two lattice points. materials are composed of an aggregate of single crystals. $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ Similarly $\overline{}$ in three dimensions is expressed as
- The study of **Solid State Physics** aims at interpreting the macroscopic properties in terms of the microscopic properties of which the crystal is composed. The study of the n children composed $\frac{1}{2}$ properties of the minute particles of which the crystal is composed. The study of the geometric forms and physical properties of crystalline solids using X-rays. \bullet The parallelopiped formed by using the translations electron neutron beams etc. constitute the science of

4.2.1 Space Lattice

- A Space Lattice or a Lattice is defined as a regular three dimensional periodicaly repetitive arrangenent
- of points in space, which is infinite in extent.
Consider an array of points in such a way that the
environment around any one point is identical with the environment about any other point. Such an array of Fig. 4.2: Unit cell in space lattice

44.11

points in two dimensions (See Fig. 41) is called the Plane Lattice.

In order to construct the two dimensional lattice, Choose any two convenlent axes OA and OB. The points lie at equal intervals say 'a' along OA and 'b' along OB.

. Fig. 4.1

- neither definite shape nor volume.

Note that the points are arranged at equal

intervals say 'c' in the third direction.
	- dimensional lattice by choosing any lattice point as origin is

$$
\overline{T} = n_1 \overline{a} + n_2 \overline{b}
$$

Here n_1 , n_2 are integral values representing the number of lattice points along OA and OB and \overline{a} and \overline{b} are

$$
\overline{T} = n_1 a + n_2 b + n_3 c
$$

May 19

electron neutron beams etc. constitute the science of a, b, c as edges is called the Unit Cell of the Crystallography.

4.2 UNIT CELL Space lattice or the Primitive Cell.

space lattice or the Primitive Cell.

-
- The angles between primitives (b, c), (c, a) and (a, b) are denoted by α , β , and γ .
- Given a lattice work several unit cells are possible. All primitive cells have equal volume which is the minimum possible volume among all unit cells.
- Thus, a Lattice is defined as a parallel arrangement of points provided the environment about any point is
- identical with the environment about any other point.
A Non-Primitive Unit cell contains additional lattice (bcc type). points, either on face or within the unit cell.
- There are two distinct type of unit cells, Primitive and Non-Primitive.
- The primitive unit cells contain only one lattice point, while non-primitive unit cell contain additional points. The additional lattice point may be in face of the unit \vert Fig. 4.4. cell or within the unit cell.
- The number of additional lattice point per unit cell may be more than one
- The Fig. 43 show the primítive and non-primitive unit cell

1.3 CUBIC SYSTEMS
The crystals are classified into seven systems on the basis of the shape of unit cell as given in the Table 4.1.

The cubic system is the simplest and the commonest

ENGINEERING PHYSICS (BATU) CHE CATSTAL STRUCTURE, X-RAYS AND ELECTRONICS INTERFERING PARTICULAR COMMUNISMENT For a cubic system, there exist three types of lattices :

- 1. There is one lattice point at each of the eight corners of the unit cell. This type is called the Primitive or Simple Cubic Cell (P) of the system.
- 2. There is one lattice point at each of the eight comers and one lattice polnt at the centre of the cubic cell. This is a body Centred Cubic Cell (I)
- 3. There is one lattice point at each of the eight comers and one lattice point at the centres of each of the six faces of the cubic cell. This is a Face Centred Cubic Cell (F) (fcc type) (See Fig. 4.4).

The corresponding Bravais lattices are displayed below in

Fg.44:Bravals space lattice typesin three dimensions

4.5 NUMBER OF ATOMS PER UNIT CELL

ENGINEERING PHYSICS (BATU)

(4.3) CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

As each lattice point is shared by eight cubes, we have 4.6 CO-ORDINATION NUMBER $\frac{2}{8}$ of a point (of an atom situated at the lattice point) $\vert \cdot \vert$ The co-ordination number is defined as the number of

contributing to the cell. The 8 such corners contribute nearest neighbours to a given atom in a crystal lattice.
 $8 \times 1/8 = 1$. On repeating the lattice points by identical 1. Simple Cubic Lattice : $8 \times 1/8 = 1$. On repeating the lattice points by identical $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ atoms, this structure therefore has One Atom per Unit $\|\cdot\|$ This crystal has one atom at each of the eight corners

2. Body Centred Cubic (BCC) Lattice:

- As shown in Fig. 4.6 there are eight atoms at the corners and one at the body centre. **2. BCC Lattice:**
- The central atom is totally shared by the unit cell and \bullet In this lattice there is one atom at each corner of the

giving 1 atom in total. Hence, there are Total 2 Atoms **per Unit Cell** for this structure. Alkali metals like Li, Na, neighbours are $((\pm \frac{a}{2} \hat{i}, \pm \frac{a}{2} \hat{j}, \pm \frac{a}{2} \hat{k}))$ K occur naturally in this form. See Fig. 4.6.

3. Face Centred Cuble Lattice (FCC):

Each unit cell consists of eight corner atoms each being member of eight cells. In addition to this there are atoms situated at the centres of the six faces of the \bullet The atoms nearest to the origin are 12 in number.

Hence there are $\frac{8}{6}$ + $\frac{6}{2}$ = 4 Atoms per Unit Cell for $\vert \cdot \vert$ The distance between two nearest neighbours (of the this lattice. Same kind of ions) is

Noble metals like gold, silver and copper occur in this group.

-
-
- **Cell.** Cell. **c** context of the cube. Taking the atom at one corner as the origin and the X, Y, Z axes along the three edges passing through that corner, the positions of nearest neighbours are \pm ai, \pm aj, \pm ak. i, j, k being unit vectors along X, Y and Z axes.
	- The atoms nearest to the origin having co-ordinates Fig. 4.5: Simple cubic primitive cell $(± a, 0, 0)$, $(0 ± a, 0)$, $(0, 0, ± a)$ are six in number. Hence co-ordination number of a simple cubic lattice is 6. The distance between two neighbours is 'a'.
		-
- the contribution due to the 8 corner atoms is $\frac{1}{6}$ each cube and one atom at the body centre. Taking the central atom as the origin, the positions of nearest
	- The nearest neighbours are elght in number, Hence coordination number of BCc lattice is 8. The distance between the two nearest neighbours is

Fig. 4.6 : BCC unit cell

$$
\sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = a \sqrt{\frac{3}{2}}
$$

(half the diagonal of the cube)

- 3. FCC Lattice:
- In this lattice, there is one atom at each of the eight corners of the cube and one atom at the centre of each of the six faces of the cube. Taking any one of the lattice points as the origin, the positions of the nearest

neighbours are+2t.:i).{=21.a). g.4.7iRCC unit cel

- cube. Each face is shared by two adjoining cubes. Hence co-ordination number of FCC lattice is 12.
	-

$$
\sqrt{\left(\frac{a}{2}\right)^2 + \left(0\right)^2 + \left(\frac{a}{2}\right)^2} = \frac{a}{\sqrt{2}}
$$

The distance between the centres of two nearest
neighbouring atoms is called as **Nearest Neighbour** neighbouring atoms is called as Nearest Neighbour Distance. It is denoted by 'a'. **E**xams

Fig 4.8: Nearest neighbour distance

If $'r$ is considered to be radius of atom, then $a = 2r$ i.e. the nearest neighbour distance is twice of the radius of atoms.

Let us cakculate the radi of different Bravais lattices of a cubical crystal.

(i) Simple Cube Cell:

A simple cube cell in two-dimensional space can be represented as -

Fig. 4.9 : Radius of simple cube unit cell

Hence for a simple or primitive cube unit cell, the radius of
the atom is half of the distance between centres of the two
nearest neighbouring atoms. the atom is half of the distance between centres of the two

(ii) Face Centered Cubic Cell (FCC):

$$
\mathbf{u} = \mathbf{v} \mathbf{v}
$$

 \mathcal{L}_\bullet

$$
r = \frac{a\sqrt{2}}{4}
$$

(iii) Body Centered Cubic Cell (BCC):

In a body centered cubical unit cell, one of
present inside the unit cell, so it can be shown It should be noted that the line BC passes atom that is present at the centre of the unit co

Fig. 4.11 : Radius of body centered cubical

Consider right angled Δ ABF, \angle ABF = 90°

9: Radius of simple cube unit cell
\na = 2r
\n
$$
\begin{array}{rcl}\n\text{A} & F^2 &=& AB^2 + BF^2 \\
&=& a^2 + a^2 \\
\hline\n\text{B} &=& 2a^2 \\
\hline\n\text{F} &=& 2b^2 + AF^2 \\
\hline\n\text{S} && DF^2 &=& AD^2 + AF^2 \\
\hline\n\text{S} && DF^2 &=& AD^2 + AF^2 \\
\hline\n\text{S} &&DF^2 &=& AD^2 + AF^2 \\
\hline\n\text{S} &&DF^2 &=& a^2 + (a\sqrt{2})^2 \\
\hline\n\text{B} &&16r^2 &=& a^2 + 2a^2 \\
\hline\n\text{C} &&16r^2 &=& a^2 + 2a^2 \\
\hline\n\text{D} &&&16r^2 &=& 3a^2 \\
\hline\n\text{F} &=& \frac{a\sqrt{3}}{4}\n\end{array}
$$

4.8 PACKING DENSIT

ENGINEERING PHYSICS (BATU) (4.5) CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

ENGINEERING PHYSICS (BATU)

CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

The steps in determination of Miller indices is given below:

- > Consider that the intercepts by the given lattice plane on the three crystal axes X, Y and Z are in the ratio pa : qb : rc where a, b, c are the primitives or lattice constants along X, Y, Z axes. p, q, r may be either small integers or simple fractions.
- > Take the reciprocals of p, q, r i.e. $\frac{1}{p}$, $\frac{1}{q}$, $\frac{1}{r}$
- Determine the smallest possible integers h, k, l \overline{a} such that

and L is the L.C.M. of p, q, r

The numbers h, k, l are called the Miller Indices of a given set of planes and the plane is specified by (h k f). To Illustrate the Concept of Miller Indices : Let a given plane cut intercepts on the axes a, b, c as 3a, 6b and Re

Then
$$
p = 3
$$

\n $q = 6$
\n $r = 8$
\nHence, $\frac{1}{p} = \frac{1}{3}, \frac{1}{q} = \frac{1}{6}, \frac{1}{r} = \frac{1}{8}$
\nLCM = 24
\n $h = \frac{24}{3} = 8, k = \frac{24}{6} = 4, l = \frac{24}{8} = 3$

Thus this plane will be represented by the Miller Indices $(8, 4, 3)$.

- . The spacing between lattice planes of crystals in which the edges of the unit cell are perpendicular can be found as follows:
- Consider the case of plane ABC of a cubic crystal as shown in Fig. 4.17. Let OA, OB and OC be orthogonal axes. Consider any set of parallel planes defined by the

Miller indices (h k θ . Consider the plane passing through the origin as the reference plane.

Let line ON be the normal to the plane passing through the origin, the length of which represents the interplanar spacing d. Let α , β and γ be the angles between co-ordinate axes X, Y, Z and ON respectively. [See Fig. 4.18 (a)].

$$
OA = \frac{a}{h}
$$
, $OB = \frac{a}{k}$ and $OC = \frac{a}{l}$... (4.6)

where 'a' is the cube edge From Fig. 4.18 (a), we have

$$
\cos \alpha = \frac{d}{OA}
$$

\n
$$
\cos \gamma = \frac{d}{OB} \text{ and } \cos \beta = \frac{d}{OC} \qquad \dots (4.7)
$$

From Fig. 4.18 (b),

i.e

i.e

Or

 (4.6)

ON = $[x^2 + y^2 + z^2]^{1/2}$

d = $[d^{2} (cos^{2} \alpha) + d^{2} (cos^{2} \beta) + d^{2} (cos^{2} \gamma)]^{1/2}$ i.e. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (4.8) Substituting the values of cos α , cos β and cos γ from equation (4.7) in equation (4.8), we get

$$
\left(\frac{d}{OA}\right)^2 + \left(\frac{d}{OB}\right)^2 + \left(\frac{d}{OC}\right)^2 = 1
$$
\n
$$
\left(\frac{dh}{a}\right)^2 + \left(\frac{dk}{b}\right)^2 + \left(\frac{d}{c}\right)^2 = 1
$$
\n
$$
\frac{d^2h^2}{a^2} + \frac{d^2k^2}{b^2} + \frac{d^2l^2}{c^2} = 1
$$

 $\frac{d^4}{d^2}(h^2 + k^2 + l^2) = 1$ $(as a = b = c for a cube)$

$$
d_{(hh)} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \qquad \qquad \dots (4.9)
$$

This gives the relation between interplanar spacing 'd' and the edge of the cube 'a'.

For general lattice structures,

$$
d_{\text{hal}} = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)^{\frac{1}{2}}
$$

```
ENGINEERING PHYSICS (BATU) (4.7) CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS
```


SOLVED PROBLEMS **Problem 4.1**: Calculate the lattice constant for potassium **Data:** $(h k) = (3, 2, 1), a = 4.2 \times 10^{-10}$ m bromide, given density of potassium bromide is 2700 kg/m $\left\{ \begin{array}{l} \text{prime, given density of potassium formulae is } 2700 \text{ kg/m} \\ \text{and belongs to FCC lattice. Molecular weight of potassium} \end{array} \right\}$ Fo bromide is 119 and Avogadro number is 6.02×10^{26} kg mol⁻¹.

Data : n = 4, M = 119,
 $N = 6.02 \times 10^{26}$, p = 2700
 Formula : $a = \left(\frac{nM}{Np}\right)^{1/3}$ **Solution :** $a = \left(\frac{4 \times 119}{6.02 \times 10^{26} \times 2700}\right)^{1/3}$ = $(2.928 \times 10^{-28})^{1/3}$ $= 6.64 \times 10^{-10}$ m

Problem 4.2: NoCl crystal has a lattice constant of 5.643 A^e. Given molecular weight of NaCl is 58.45 and Avogadro number is 6×10^{26} per kg mole. Find its density. Data : $n = 4$, $a = 5.643$ A^o, M = 58.45, N = 6×10^{26} kg $mol⁻¹$

Solution: $\rho = \frac{nM}{Na^3}$ (i) $= \frac{4 \times 58.45}{6 \times 10^{26} \times (5.643 \times 10^{-10})^3}$ $=$ 2168.51 Kg/m³ (i)

Problem 4.3: Find the Miller indices of a plane making intercepts 30, 5b, 7c on obtique axes \overline{a} , \overline{b} , \overline{c} .

Multiplying by the LCM 105 $\frac{105}{3}$; $\frac{105}{5}$; $\frac{105}{7}$ Then $h = \frac{105}{3} = 35;$ $k = \frac{105}{5} = 21; L = \frac{105}{7} = 15$ Miller indices are $\overline{35, 21, 15}$
Problem 4.4 : Calculate the interplanar spacing for (3, 2, 1)

plane in a simple cubic lattice where lattice constant 4.2×10^{-10} m.

mol 4.2X - x 10 Solutlon: dha +4* x 10 Data: n = 4, M = 119,

Formula : $a = \left(\frac{nM}{N\alpha}\right)^{1/3}$ **Problem 4.5** : A FCC crystal has an atomic radius of 1.246 A.e. Whot are d_{200} d_{280} and d_{111} spacings? Solution : For FCC crystal the interatomic distance

Solution:
\n
$$
a = \left(\frac{6.02 \times 10^{26} \times 2700}{6.64 \times 10^{-10}}\right)
$$
\n
$$
= \frac{(2.928 \times 10^{-26})^{1/3}}{6.64 \times 10^{-10}} = 2\sqrt{2} \text{ r}
$$
\nProblem 4.2: $NotC$ crystal has a lattice constant of 5.643
\n
$$
A = \sqrt[3]{2}
$$
\n
$$
= 2\sqrt{2} \text{ r}
$$
\n
$$
= 2\sqrt{2} \text{ r}
$$
\n
$$
= 2\sqrt{2} \text{ r}
$$
\n
$$
= 2\sqrt{2} \text{ m}
$$
\n
$$

$$

Give

Taking reciprocals of the intercepts,
 $\frac{1}{p_1}$, $\frac{1}{p_2}$, $\frac{1}{p_3}$ = $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$
 $\frac{1}{p_1}$, $\frac{1}{p_2}$, $\frac{1}{p_3}$ = $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$
 $\frac{1}{p_1}$, $\frac{1}{p_2}$, $\frac{1}{p_3}$ millimeter on a plane (100) of lead whose interatomic distance is 3.499 A°. Lead has face-centred cubic structure.

- Hol. W. L. bragg gave a simple interpretation of the
diffraction pattern obtaine**s** owner and been more party EXAMS. in FG = n A diffraction pattern obtaine BOWNEOADEDD PAROMOL
monochromatic X-rays was made to pass through a monochromatic X-rays was made to pass through a From Fig. 4.28,
costal
- Cystal.
• The atoms in a crystal are arranged in a regular three EF = FG = dsin edimensional manner in such a way that there are sets Substituting (4.11) in (4.14) dimensional manner in such a way that there are sets of parallel layers rich in atoms in diferent planes, each plane having its own spacing between layers, some planes richer in atoms than others.
- acts as a scattering centre and emits secondary wavelets whose envelope gives rise to the reflected \bullet Destructive interference occurs in other directions.
wavefront (by Huygen's theory). Hence scattering of Xrays can be looked upon as Bragg reflections from planes called the Bragg Planes.
- At certain glancing angles, reflections from these set of $\begin{array}{|l|l|}\n\hline\n\text{occur.} \\
\text{parallel planes are in phase (to give maximum }\end{array}$ These are called as first order (n = 1), second order intensity). At other angles, reflections from different planes are out of phase (to give minimum or zero ntensity).

- Consider a crystal consisting of a set of parallel planes separated by a distance d.
- Let a narrow monochromatic beam of X-rays of wavelength λ be incident on this plane at a glancing angle 6.
- Consider two parallel rays ABC and DFH which are refected by two atoms B and F in adjacent layers, ^F being vertically below B.
- ٠ difference between them is given by (EF + FG) where E and G are the feet of the perpendiculars drawn from B on DF and DH respectively.
- This path difference will decide whether the two \bullet Rotating about the same axis is an arm R carrying an
- the reflected rays will reinforce each other to produce

$$
EF = FG = d \sin \theta \qquad \qquad \dots (4.11)
$$

Substituting (4.11) in (4.10.

$$
2 \text{ d sin } \theta = n\lambda
$$

- This relation is known as Bragg's Law. It indicates that, When a beam of X-rays falls on the crystal, each atom for given values of n, λ and d there is reflection only in a particular direction defined by θ .
	-
	- By making n equal to 1, 2, 3 etc. successively, a series of values are obtained for θ for which sharp reflections
- parallel planes are in phase (to give maximum $\vert\bullet\vert$ These are called as first order (n = 1), second order
intensity). At other angles, reflections from different $\vert\,\vert$ (n = 2) ats maximum As the order of the sections n = 2), etc. maximum. As the order of the spectrum increases, the intensity decreases.

- 4.13.1 Bragg's Law . 184.15.2Brogg's X-RaySpectrometer collimated, (2) a circular table graduated and provided with a vernier to hold the crystal and (3) a deflecting device.
	- K-rays trom an X-ray tube are collimated into a tine beam by two narrow slits S_1 and S_2 .
	- \bullet The beam is made to be incident at a glancing angle θ Ray DFH has a longer path than ray ABC and the path on the face of a crystal C (of calcite, rock salt, mica, NaCI etc.), which is mounted on a circular table T. This table can rotate about a vertical axis and its position can be read by the graduated scale and vemier V.
	- reflected rays will be in phase or out of phase.
When the path difference is equal to $n\lambda$ (n-an integer), notition posibion.
	- an intense beam. The intensity of the X-ray beam (i.e. degree of ionisation in the chamber) that enters the chamber is measured by an electrometer E

.in

ENGINEERING PHYSICS (BATU)

CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

- The turn table T and arm R are so linked that when the T, and hence the crystal, rotates through an angle 0, the R and hence the ionization chamber T turns through 20.
- Therefore, whatever be the incident angle of the beam at the crystal surface, it is always reflected into L If the reflected beam is to be recorded on a photographic film, I can be replaced by a camera.
- The ionization current is measured for different values of 0 and a plot is obtained.

- From the graph, the glancing angles θ_1 , θ_2 , θ_3 for first, second and third order reflections are measured. Knowing the values of d and n, wavelength λ of X-rays can be calculated using Bragg's equation i.e. 2d sin $\theta = n\lambda$.
- Fig. 4.30 (a) is the spectrum when the X-ray beam is monochromatic while Fig. 4.30 (b) represents the case when the X-ray beam consists of two wavelengths λ_1 and λ_2 .
- . In this way, Bragg's spectrometer can be used to find the wavelength of X-rays. Conversely d can be computed if λ of X-rays is known from some other experiment.

Problem 4.10: Using Bragg's X-ray spectrometer, the glancing angle for first order spectrum was observed to be 8°. Calculate the wavelength of X-rays if $d = 2.82 \times 10^{-10}$ m. $\theta = 8^{\circ}$. n_{min} .

$$
d = 2.82 \times 10^{-10} \text{ m, } n = 1
$$

Formula:2 d sin θ = nλ
Solution:
$$
\lambda = \frac{2d}{n} \sin θ
$$

$$
= \frac{2 \times 2.82 \times 10^{-10} \sin 8^{\circ}}{1}
$$

$$
= 2 \times 2.82 \times 10^{-10} \times 0.1392 \text{ m}
$$

$$
= 0.7857 \text{ A}^{\frac{1}{3}}
$$

Problem 4.11 : X-rays of wavelength 1.6 A° are diffracted by a Braga crystal spectrometer at an angle 14.2° in the first order. What is the spacing of atomic layers in the crystal ? **Data:** $\lambda = 1.6 A^* = 1.6 \times 10^{-10}$ m, $\theta = 14.2^{\circ}$, n = 1

Formula: 2d sin
$$
\theta = n\lambda
$$

 (4.11)

i.e.
$$
d = n \frac{\lambda}{2 \sin \theta}
$$

\nSolution: $= 1 \times 1.6 \times \frac{10^{-10}}{2 \times \sin 14.5^{\circ}}$
\n $= \frac{\frac{16 \times 10^{-10}}{2 \times 0.2454}}{2 \times 0.2454} = \frac{3.26 \text{ A}^{\circ}}{3.26 \text{ A}^{\circ}}$

Problem 4.12 : Calculate the longest wavelength that can be analysed by a crystal with an interplanar spacing of 3 A° in first order.

Data: $d = 3 A^o$, $n = 1$, $sin \theta = 1$ (maximum)

Formula:
$$
\lambda = \frac{2d}{n} \sin \theta
$$

\n**Solution:** $\lambda = 2 \times 3A^{\circ}$
\n $= \frac{6A^4}{}$

Problem 4.13 : The unit cell dimension 'a' of NaCl lattice is 5.63 A* If an X-ray beam of $\lambda = 1.1$ A* falls on a family of

planes with a separation of $\frac{a}{\sqrt{5}}$, how many orders of diffraction are observable?

Data:
$$
\lambda = 1.1 \text{ A}^{\circ}
$$
, $a = 5.63 \text{ A}^{\circ}$, $d = \frac{a}{\sqrt{5}}$
Formula: $n = \frac{2 \text{ d} \sin \theta}{\lambda}$

Formula:

Solution: For maximum observable orders, $\theta = 90^\circ$

$$
\therefore \quad n = \frac{2d}{\lambda} = \frac{2 \times 5.63}{\sqrt{5}} \times \frac{1}{1.1}
$$

$$
= \frac{4.585 \times 5}{4.585 \times 5}
$$

Four orders of diffraction are observable.

Problem 4.14 : When a nickel target is used in a X-ray tube, the two shortest wavelengths emitted are found with a Bragg's crystal spectrograph to be diffracted at an angle of 15.1 ° and 17.1 ° respectively. Find their wavelength assuming crystal spacing of 2.81 A°.

Data: $d = 2.81 A^{\circ}, \quad \theta_1 = 15.1^{\circ}, \quad \theta_2 = 17.1^{\circ}, \quad n = 1$ $\lambda = \frac{2d \sin \theta}{2d \sin \theta}$ Formula: \mathbf{n}

ENGINEERING PHYSICS (BATU) 6 (4.12) CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

4.13.3 Crystal Structure using X-Rays Diffraction

- Atoms of different elements in a crystal have definite orderly arrangement in the space. When X-rays are $\|$. There are two types of X-ray tubes. (i) The gas filled or incident on the crystal, they are scattered by each atom of the crystal. Definite arangement of atoms represent
- Combined effect of scattering of X-rays by these sets of planes can be considered as reflection of X-rays by independent of each other. So we describe it here. these planes.
The scattering caused by the atoms is called Bragg's $\frac{4.14.1 \text{ Coolidge Hot-Cathode X-Ray Tube}}{2}$
- Scattering or Bragg's Reflection. The planes which cause these reflections are called **Bragg's Planes.** \sqrt{s} Electrons
- Due to the presence of sets of parallel planes rich in
- X -ray reflections from these sets of parallel planes are X -ray X -rays in phase with each other for certain glancing angle.
Hence, different reflected X-rays combine together to Fig. 4.31: Coolidge tube give a very strong effect. As a result the ionisation . This tube is widely used for commercial and medical current produced by these is very large. If the angles of incidence are other than the above angle, X-ray
reflections are antiphase with each other. So the

X-RAY

- The X-rays are produced when high velocity electrons strike the target material of high atomic number, such as tungsten or molybdenum. About 99 % of electrons striking solid matter targets are wasted in heating the \parallel . This high d.c. voltage is obtained from a step up target and increasing the kinetic energy of the particles hit. The remaining 1 % collisions produce two types of X-rays. the characteristic X-rays and continuous X-rays,
	- The target T consists of a copper block in which a piece

	by loosing their energy in the following two ways.

	1. Some of the incident electrons transfer their

	energy to the target atoms. The target atoms retain

	this ener characteristic of the target material. So they are othigh melting point, so the called Characteristic Y. Pays called Characteristic X-Rays
- = 1.464 A° continuous loss in kinetic energy of incident electrons and X-rays are emitted continuously. So
they are called Continuous X-Rays.
	- . The basic requirements of X-ray production are : 0A sOurce of electrons (i) Effective means of accelerating electrons and (iii) A target of suitable material ot high atomic number
	- Roentgen X-ray tube and (ii) The Coolidge hot cathode X-ray tube.
- sets of parallel planes which are rich in these atoms.
Combined effect of scattering of X-rays by these sets of separate control of the intensity and quality of X-rays

- purposes. The essential elements ot a modern coolidge X-ray tube are shown in Fig. 4.31.
- A tungsten filamentary cathode F is heated by a low resultant reflection is zero or extremely weak. voltage battery and electrons are produced **4.14 LINE AND CONTINUOUS SPECTRUM OF FULL SET AND SET AND AND SET AND AND SET AND SET** target T bya cylindrical shield S which surrounds F. The shield S is maintained at a negative potential. The electrons are accelerated to very high speeds by the d.c. voltage of 5o kv to 100 kV applied between the cathode the F and the anode.
	- transformer whose output is converted into d.c. voltage by a full wave rectifier,
	-
	- then emit it shortly as X-rays which are external cooling fins. The anode should be of a metal
characteristic of the then enterial 50 them are of high melting point, so that, it will not melt under the

ENGINEERING PHYSICS (BATU) (4.13) CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS
• To produce hard X-rays and for their abundant yield, X-fax (X-fax)

- the anode should be of a metal of high atomic number
- When the accelerated electrons strike the target and are stopped by it, they give up their kinetic energy and thereby produce X-rays.
- The intensity of X-rays depends on the number of elecirons striking the target. This number depends on the temperature of the filament and so on the filament
current. So, by controlling the filament current by a
current. So, by controlling the filament current by a
 \bullet When the electron is comp current So, by controlling the filament current by a \bullet When the electron is completely stopped, i.e. when rheostat R, the thermionic emission and hence intensity $v' = 0$ X-rays of maximum frequency are emitted. In of X-rays can be controlled.
- The quality of X-rays is measured in terms of their penetrating power. It depends on the p.d. between the cathode and the anode
- Greater the accelerating voltage, higher is the speed of the striking electrons and consequently, more penetrating are the X-rays produced.
- High penetrating X-rays are called hard X-rays and low penetrating X-rays are called soft X-rays. Thus the quality of X-rays in Coolidge tube can be controlled by varying the p.d. between the cathode and the anode.

- 4.14.2 Continuous X-Rays [Dec. 17, May 19]
When fast moving electrons are obstructed by solid metal targets, X-rays are produced. Some of the high velocity electrons penetrate deep into the interior of the atoms of the target material and are attracted by
their positively charged nuclei. As an electron passes close to the nucleus, it is deflected from its path as shown in Fig. 4.32.
- The electron experiences deceleration during its deflection in the strong field of the nucleus. The energy lost during its retardation is given out in the form of Xrays of continuously varying wavelength.
- These X-rays produce a continuous spectrum having a sharply defined short wavelength limit Amin (or high frequency limit vmax) which corresponds to the maximum energy of the incident electron.
- As shown in Fig. 4.32, if the striking electron of mass m has its velocity reduced from v to v' due to deflection $\lambda_{min} = \frac{\lambda_{min}}{V} A^{\circ}$ A ... (4.15) or due to collision, then loss of its energy is

 $\left(\frac{1}{2}mv^2 - \frac{1}{2}mv^2\right)$ and this must be equal to the energy hu of the emitted X-ray photon,

$$
\therefore \qquad \qquad \text{hu} \; = \; \frac{1}{2} \; \; \text{m} \; (v^2 - v^{2})
$$

DOWNLOADED FROM BATU-EXAMS.in

 $v' = 0$, X-rays of maximum frequency are emitted. In that case.

$$
hv_{\text{max}} = \frac{1}{2} mv^2 \qquad \qquad \dots (4.12)
$$

If kinetic energy is imparted to the electron by accelerating it througha p.d. of V volts, then

$$
eV = \frac{1}{2} \, m v^2 \qquad \qquad \dots (4.13)
$$

From equations (4.12) and (4.13)

$$
h v_{max} = eV
$$

i.e.
$$
h \frac{c}{\lambda_{min}} = eV
$$
 ($\because \lambda_{min} v_{max} = c$)
 $\therefore \lambda_{min} = \frac{hc}{eV}$... (4.14)

- where c is the velocity of light
- \bullet Equation (4.14) gives the short-wavelength limit of the continuous X-ray spectrum.

Substituting for the constants c = 3×10^8 m/s, e = 1.6×10^{-19} C, h = 6.63×10^{-34}
J-s,

we ge

w

$$
\lambda_{\min} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \text{ V}} \text{ metres}
$$

$$
= \frac{1.24 \times 10^{-6}}{\text{V}} \text{ m}
$$

$$
\lambda_{\min} = \frac{12400}{\text{V}} \text{ A}^{\circ} \qquad \dots (4.15)
$$

Such radiations are called Braking Radiations, because they are due to braking or siowing down of high velocity electrons in the positive field of a nucleus. These X-rays consist of a series of uninterrupted wavelengths having a sharply defined short wavelength limits λ_{\min} and they form the continuous spectrum.

-
- They are determined by the p.d. between the cathode and the anode of the X-ray tube and are independent of the nature of the target material.

- solid metal targets, X-rays are produced. Some of the high velocity electrons knock out the tightly bound electrons in the innermost shells (like K, L, M... etc. shells) of the atoms, while penetrating the interior of the atoms of the target material.
- When electrons from outer orbits jump to fill up the vacancy so produced, the energy difference is given out in the form of X-rays of definite wavelength. lower than that of K-series are produced. This gives the
- These wavelengths form the line spectrum which is characteristic of the material of the target. So it is called Characteristic X-Ray spectrum.

Fig.4.35

- Fig. 4.33 (a) shows the case when the high velocity
incident electrons knock out one electron from the incident electrons knock out one electron from the
K-shell of the atom. As shown in Fig. 4.33 (b), this
K-shell vacancy is filled up by an electron from a K-shell vacancy is filled up by an electron from a nearby L-shell. **Constitutes in the continuous spectrum.** Constitutes the continuous spectrum.
- During this jump an X-ray photon of frequency v, such that $E_K - E_L = h\nu$ is emitted, where E_K is the energy required to dislodge a K-shell electron and E_t is the energy required to dislodge an L-shell electron.
- large. the emitted X-rays have very large energy and hence they are highly penetrating

ENGINEERING PHYSICS (BATU CAYSTAL STRUCTURE, X-RAVS AND ELECTRODYNAMICS

If, however, the K-shell vacancy is filled up by an electron jumping from the M-shell, the emitted X-rays would be still more energetic and would possess still **4.14.3 Characteristic of X-Rays** higher frequency because $(E_K - E_M) > (E_K - E_L)$. Such
a little design sharped as substant stagged by X -rays arising from millions of atoms produce the When fast moving electrons are suddenly stopped by a strays arising from millions of atoms produce the straight moving electrons are suddenly stopped by K -fines of the characteristic spectrum as shown in Fig. 4.34 (a). Usually, K_{α} and K_{β} lines of this series are detected although there are many more.

> Similarly, when the incident electron has somewhat lesser energy, it dislodges an L-shell electron. This L-shell vacancy is filled up by an electron jumping from M-shell to other outer shells, and X-rays of frequency La La, and L, lines of the L-series of the characteristic spectrum, as shown in Fig. 4.34 (a) and (b).

- Spectral lines of M-series are produced when incident electron knocks out an M-shell electron and this Mshell vacancy ls filed up by electrons jumping from outer shells. The characteristic X-ray lines are shown in energy level diagram in Fig. 4.34 (a) and (b).
- These K-series, L-series and M-series constitute the line spectra of the X-rays, which are characteristic of the material of the target used in the X-ray tube.
- So, the X-rays produced by an X-ray tube consist of wo parts
	- 1. One part consists of a series of unintemupted wavelengths having a short cut off λ_{min} . This
	- 2. The other part consists of a number of distinct and discrete wavelengths. They constitute the line or the characteristic X-ray spectrum.
- As this energy difference (E_g E_L) is comparatively very $\|\cdot\|$ The characteristic spectrum is superposed on the continuous spectrum. X-ray spectrum of molybdenum is shown in Fig. 4.35.

ENGINERING PHYSICS (eATU) (4.15) CRYSTAL STRuCTURE, X-RAYSAND ELECTRODYNAMICS

4.15 MOSELEY'S LAW
• A systematic study of characteristic X-ray spectra of different netallic elements was carried out by Moseley in 1913 - 14 by using them as targets in the X-ray tube. He used Bragg's spectrometer for this study.

- His observations are :
 \triangleright The characteristic X-ray spectra of different Fire characteristic x-ray spectra or different **Importance of Moseley's Law:**
elements are similar, as characteristic spectrum of \cdot **As per this law, the atomical example in the atomic**
- greater than that produced by an element of lower atomic number. This is so because the binding
energy of electrons increases as we go from one larger amount of energy is required to liberate an electron from K-shells, L-shells and M-shells of atoms of an element of higher atomic number..
- Thus, say for K_u line, the higher the atomic number of the target material, higher is the frequency of the K_{α} line. Mathematically,
 $v \propto (Z - a)^2$

or $v = b (Z - a)^2$

$$
\nu \propto \mu
$$

- where different series.
	- series.
	- $Z =$ Atomic number of the target material.
- Equation (4.16) is called Moseley's law. It may be stated as, The frequency of a spectral line in characteristic X ray spectrum varies directly as the square of the atomic number of the element emitting it".
- Moseley's diagram for K_{α} and K_{β} lines, obtained by plotting $\sqrt{\mathrm{p}}$ versus Z of different elements is shown in Fig. 4.36.

May 18 For Ku line, it was found that b = 4 R where Ris Rydberg constant, and a = 1.

Hence for K_{α} line,

H is observations are :
$$
v_{k_{\alpha}} = \frac{3}{4} R(Z-1)^2
$$
 ... (4.17)

- As per this law, the atomic number of an element series. **Serves.** determines its physical and chemical properties, and The frequency of lines (in every series) produced not its atomic weight. So the basis of periodic table is
from an element of higher atomic number is now taken as to arrange elements according to their now taken as to arrange elements according to their increasing atomic nurmber and not as their increasing atomic weghts as was done earlier.
	- energy of electrons increases as we go from one electronal of Mandelev's basis of the periodic table was to arrange
element to another of higher atomic number, i.e. elements in ascending atomic weights. So, Potassium 19K³⁹ was placed before Argon ₁₈A⁴⁰ and Nickel and
₂₈Ni⁵⁸⁷ was placed before Cobalt ₂₇Co^{58.9}. However, Mandelev observed that to maintain the periodicity of
chemical and physical properties their orders should be reversed. This difficulty was removed by Moseley's law, because as per their atomic numbers, their order
- $\overline{D} = \overline{D} (Z a)^2$ (4.16) should be just opposite.

where $v = \overline{D} (Z a)^2$ (4.16) Moseley's law also led to the discovery of some new $v =$ frequency of characteristic radiation. \bullet Moseley's law also led to the discovery of some new
b = constant, which is different for elements like Hafnium (Z = 72), Promethenium $(Z = 61)$, Technitium $(Z = 43)$, Rhenium $(Z = 75)$ etc.
	- a = constant, known as screening **Problem 4.15** : An X-ray tube operating at 20 kV emits a constant and is different for different continuous spectrum with shortest wavelength limit of 0.62 continuous spectrum with shortest wavelength limit of 0.62 A^e. Calculate Planck's constant.

Solution: Short wavelength limit

$$
\frac{hc}{eV} = \lambda_{min}
$$
\n
$$
h = \frac{eV \lambda_{min}}{C}
$$
\n
$$
= \frac{1.6 \times 10^{-19} \times 2 \times 10^4 \times 0.62 \times 10^{-10}}{3 \times 10^8}
$$
\n
$$
\therefore h = \frac{6.72 \times 10^{-34} \text{ Js}}{2.50 \times 10^{-34} \text{ Js}}
$$

anticathode (ii) minimum wavelength of X-rays generated. Given $e = 1.6 \times 10^{-19}$ C, $m = 9.1 \times 10^{-31}$ kg. Data: $V = 50 kV = 50 \times 10^3 V$, $e = 1.6 \times 10^{-19} C$

m = $9.1 \times 10^{-31} kg$ Formula: (i) $v_{max} = \sqrt{\frac{2 \text{ eV}}{m}}$

Ť

$$
\text{(ii)} \qquad \lambda_{\min} = \frac{12400}{V} A^{\circ}
$$

l.in

ENGINEERING PHYSICS (BATU)

s

CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS

 $\lambda_{min} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{100 \times 10^3 \times 1.6 \times 10^{-19}}$

= 12.375×10^{-10} m $\frac{100\times10^{3}\times1.6\times10^{-19}}{6.6\times10^{-34}}$

 (4.16)

 $\langle i \rangle$

 (ii)

Solution:

olution : (i)
$$
v_{max} = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 50 \times 10^3}{9.1 \times 10^{-31}}}
$$

\n
$$
= \frac{1.326 \times 10^4 \text{ m/sec}}{5.0 \times 10^3}
$$

\n(ii) $\lambda_{max} = \frac{12400}{50 \times 10^3}$
\n
$$
= 0.248 \text{ A}^3
$$

Problem 4.17 : In an X-ray tube, electrons bombarding the and produce X-rays of wavelength 1 A°. Taking Planck's
constant as $h = 6.6 \times 10^{-34}$ J-sec., calculate the energy of the electrons as it hits the anode (in Joules) and the voltage of the X-ray tube.

Data: $\lambda_{min} = 1 \text{ A}^{\circ} = 10^{-10} \text{ m}$, h = 6.6 x 10⁻³⁴ J-sec,
e = 1.6×10^{-19} C, m = 9.1×10^{-31} kg; c = 3×10^{8} m/sec. $m \cdot m$ h $\frac{E}{2}$

Formula: (i)
$$
E = \frac{6.6 \times 10^{-34} \times 3 \times 10^6}{10^{-10}}
$$

\n $= 19.8 \times 10^{-16}$
\n(ii) $V = \frac{19.8 \times 10^{-16}}{1.6 \times 10^{-15}}$
\n $= 12.375 \times 10^3$
\n $= \frac{12.375 \times 10^3}{1.2375 \text{ volts.}}$

Problem 4.18 : What is the frequency of an X-ray photon whose momentum is 1.1×10^{-23} kg-m/sec.

Data: $p = 1.1 \times 10^{-23}$ kg-m/sec, $c = 3 \times 10^8$ m/sec, $h = 6.6 \times 10^{-34}$ J-sec.

Formula:
$$
E = pc = hv
$$

 $v = \frac{pc}{h}$ Solution:

ł,

$$
\frac{1.1 \times 10^{-23} \times 3 \times 10^{8}}{6.6 \times 10^{-34}}
$$

$$
\frac{5 \times 10^{18} \text{ Hz}}{}
$$

Problem 4.19 : What is the wavelength of electrons emitted when 100 keV electrons strike a target ? What is their frequency.

Data: E = 100 KeV = $100 \times 10^3 \times 1.6 \times 10^{-19}$ J, c = 3 x 10^8 m/sec, h = 6.6×10^{-34} J-sec.

Formula : (i) $\lambda_{mn} = \frac{hc}{E}$ $v = \frac{E}{h}$ (ii)

=
$$
\frac{[0.24 \times 10^{20} \text{ C/sec}]}{[0.24 \times 10^{20} \text{ C/sec}]} = \frac{[0.24 \times 10^{20} \text{ C/sec}]}{[0.24 \times 10^{20} \text{ m}]} = 0.24 \times 10^{20} \text{ m}^2
$$
\n
$$
kV \text{ and the current through it is 10 mA, calculate the number of electrons striking the target per second and the short wavelength limit of the X-rays generated.
$$
\n**Data:**
$$
V = 25 \text{ kV} = 25 \times 10^3 \text{ V}, \quad I = 10 \text{ mA} = 10 \times 10^{-3} \text{ Amp}, \quad P = 16 \times 10^{-19} \text{ C}
$$
\n**Formula:** (i)
$$
I = \text{ne}
$$
\n(ii)
$$
\lambda_{\text{min}} = \frac{12400}{\text{ V}} \text{ A}^{\text{o}}
$$
\n**Solution:**\n(i)
$$
n = \frac{I}{e} = \frac{10 \times 10^3}{1.6 \times 10^{-19}} = 0.625 \times 10^{23} \text{/sec}
$$
\n(ii)
$$
\lambda_{\text{min}} = \frac{12400}{25 \times 10^3} \text{ A}^{\text{o}}
$$

 $\lambda_{\min} = \frac{12400}{25 \times 10^3} A^{\circ}$ $= 0.496 A^{\circ}$ Problem 4.21 : An X-ray tube operated at 50 kV emits a continuous spectrum with a short wavelength limit of 0.24

A^{*} Calculate Planck's constant. **Data:** $V = 50 \times 10^3$ V, $\lambda_{min} = 0.24$ A°, $c = 3 \times 10^8$ m/sec, $e = 1.6 \times 10^{-19}$ C. **Formula:** $\lambda_{min} = \frac{hc}{eV}$ Solution: $\mathbf{h} = \frac{\mathbf{e} \cdot \mathbf{V} \cdot \lambda_{\text{min}}}{c}$ $=\frac{1.6\times10^{-19}\times50\times10^{3}\times0.24\times10^{-10}}{3\times10^{8}}$ $= 6.4 \times 10^{-34}$ J-sec. **4.16 INTRODUCTION TO ELECTRODYNAMICS** . The space is filled with two things, matter and radiation. The matter is constituted by electrons,

protons, neutrons etc. where as radiations are electromagnetic, phonon, gravitons etc.

ENGNEEESES ATU) 4.1) CRYSTAL STRCTURE, M-RAYS AND ELECTROoYNAMICS

Ordinary matter ls made up of atoms which have positively charged nuclei and negatively charg9ed electrons orbiting around them.

- The charge of an atom is quantized in terms of the electronic charge $-e$ whose value is 1.6×10^{-19} coulomb. When two charges are separated a distance, would experience a force due to the electric field produced by them. Thus the total current density can be written as
- On the other hand the motion of charges generate current and hence magnetic field. When these fields are time varying they produce electromagnetic waves On the other hand the motion of charges generate
current and hence magnetic field. When these fields
are time varying they produce electromagnetic waves
are coupled with each other by Maxwell's equation. $\nabla \cdot \vec{J} = \nabla \$
- With the help of Maxwell's equations, we can derive wave equation, based on which the propagation of electromagnetic waves can be investigated in different media.

4.17 INTRODUCTION OF MAXWELL'S EQUATION EQUATION [Dec. 18]
When the charges are in motion, the electric and

magnetic fields are associated with them which will change in both the space and time. Thus, the electric **here** above equation is valid for steady state and magnetic fields are interrelated with each other This phenomenon is called **Electromagnetism** which of continuity for time dependent fields.
are mathematically explained by **Maxwell's Equations.**
We are the term \overrightarrow{j} is called Conduction Current Density and We can write Maxwell's equations in differential or integral form.

4.17.1 Differential form of Maxwell's Equation [May 19] 4.17.2 Integral Form of Maxwell's Equation

(Dec. 18) [Dec. 18]

In differential form, the Maxwell's equations are as given The Maxwell's equations in integral form are below (S. 1. Units)

- $\nabla \cdot \vec{D}$ = ρ or $\nabla \cdot \vec{E}$ = $\frac{\rho}{\epsilon_0}$ Gauss's law ... (4.18)
- $\nabla \cdot \vec{B}^{\dagger} = 0$ Monopoles do not exist... (4.19)
 $\nabla \cdot \vec{E} = \frac{-\partial \vec{B}^{\dagger}}{\partial t}$ Faraday's law ... (4.20) Faraday's law ... (4.20)
- $\nabla \cdot \vec{H} = \vec{j}$ Ampere's circuital law ... (4.21)
These are the Maxwell's four equations which govern electromagnetism.

- \triangleright The first three of these are general equations and are valid for static as well as dynamic fields.
- But the fourth equation is derived for steady state, for time-varying fields take the divergence on both $sides.$ (4.31)

$\nabla \cdot (\nabla \times \vec{H}) = \nabla \cdot \vec{j}^* = 0$... (4.22) The above equation is incompatible with the principle

of conservation of charge in the equation of continuity.

i.e.
$$
\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0 \qquad \qquad \dots (4.23)
$$

This is due to incomplete definition of current density.

$$
\nabla \cdot \vec{j} = -\frac{\partial \rho}{\partial t} = \frac{-\partial}{\partial t} (\nabla \cdot \vec{D})
$$

$$
\nabla \cdot \vec{j} = \nabla \cdot \left(-\frac{\partial \rho}{\partial t}\right)
$$

$$
\vec{\nabla} \cdot \nabla \cdot \left(\vec{j} + \frac{\partial \vec{D}}{\partial t}\right) = 0 \qquad \qquad \dots (4.24)
$$

Maxwell replaced \overrightarrow{j} in Ampere's law by \overrightarrow{j} + $\frac{\partial D}{\partial t}$.

Therefore, the Ampere's law takes the from

$$
\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad \qquad \dots (4.25)
$$

- phenomenon and is also compatible with the equation of continuity for time dependent fields.
- $\frac{\partial D}{\partial t}$ is called Displacement Current Density

Displacement Current: Dec 1814.18ELECTROMAGNETIC WAVE IN FREE
> The first three of these are general equations and SPACE The Maxwell's equations for free space are given by.

$$
\nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{E}}{\partial t}
$$
...(4.32)
and
$$
\nabla \times \vec{E} = \epsilon_0 \frac{\partial \vec{E}}{\partial t}
$$
...(4.33)
Taking Curl of equation (4.32)

$$
\nabla \times (\nabla \times \vec{E}) = -\mu_0 \frac{\partial}{\partial t} (\nabla \cdot \vec{H})
$$

$$
\nabla \times (\nabla \times \vec{E}) - \nabla^2 \vec{E} = -\mu_0 \frac{\partial}{\partial t} \left[\epsilon_0 \frac{\partial \vec{E}}{\partial t} \right]
$$

But
$$
\nabla \cdot \vec{E} = 0
$$

$$
\therefore \nabla^2 \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial x^2} = 0
$$
...(4.34)

$$
\nabla^2 \vec{\mathbf{E}} - \frac{1}{\mathbf{v}^2} \frac{\partial^2 \vec{\mathbf{E}}}{\partial t^2} = 0 \qquad \qquad \dots (4.35)
$$

Similarly the curl of equation (4.33) gives the wave

equation for the field \vec{H} . \cdot **Packing Factor:** The ratio of the volume of the atoms

i.e.
$$
\nabla^2 \vec{H} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{H}}{\partial t^2} = 0
$$
 ... (4.37)

if
$$
v = \frac{1}{\sqrt{\mu_0 \epsilon_0}}
$$
 ... (4.38)

then
$$
\nabla^2 \overrightarrow{H} - \frac{1}{v^2} \frac{\partial^2 \overrightarrow{H}}{\partial t^2} = 0
$$
 ... (4.39)

$$
\vec{E} \ (\vec{r}, t) = \vec{E}_0 e^{i(\vec{K} - \vec{r} - \omega t)} \qquad \dots (4.40)
$$

and $\vec{H} \ (\vec{r}, t) = \vec{E}_0 e^{i(\vec{K} - \vec{r} - \omega t)} \qquad \dots (4.41)$

where, ω is the angular frequency of variation of the fields

 \vec{K} is the wave vector which tells the direction of propagation of the wave. symmetry under that operation.

The ratio ω /K gives the phase velocity of the wave which is $\vert \bullet \vert$ The main symmetry elements of a crystalline solid are : equal to the speed of light c in the free space or vacuum.
In free space (vacuum)

$$
\mu_0 = 4 \pi \times 10^{-7} \, \text{H/m}
$$

$$
\epsilon_0 = 8.854 \times 10^{-12} \, \text{f/r}
$$

ENGINEERING PHYSICS (BATU) (4.18) CRYSTAL STRUCTURE, X-RAYS AND ELECTRODYNAMICS
 $\nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$... (4.32) From equ. (4.38), $C = 2.99 \times 10^8$ m/s. \mathcal{L} which is the velocity of light **SUMMARY** • Space Lattice : It is defined as a regular 3-dimensional periodically repetitive arrangement of points in space, which is infinite in extent or $\nabla \times (\nabla \times \vec{E}) - \nabla^2 \vec{E} = -\mu_0 \frac{\partial}{\partial t} \left[\varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right]$

• **Basis:** It is a group of atoms or molecules.
 Crystal Structure: It is formed by the addition of basis to every lattice point of space lattic • Unit Cell: The parallelopiped formed by using $\frac{\partial^2 E}{\partial t^2} = 0$... (4.34) premitive reactors (a, b, c) as edge is called unit vector. This is the wave equation governing the field $\vec{\epsilon}$. **Bravals Lattice:** Common nomenclature given to the We can write this as 14 different lattices under the seven systems of the crystals. .(4.35) Co-Ordination Number : t is the number of nearest neighbours to a given atom in a crystal lattice. where, $v = \frac{1}{\sqrt{\mu_o \epsilon_o}}$... (4.36) ... (4.36) ... Lattice Constant : The distance between two neighbouring atoms, a = $\left(\frac{nM}{N\rho}\right)^{1/3}$. per unit cell to the total volume of the unit cell. • Lattice Plane : A set of parallel equidistant planes passing through the lattice points. Miller Indices : h : k : $t = \frac{1}{p} : \frac{1}{q} : \frac{1}{r}$. θ) The numbers h, k, l are called the Miller indices of a given set of planes and the plane is specified by (hkf). The solution of equations (4.35) and (4.36) is written as **Relation between Interplanar Distance and Miller** Indices: $d_{\text{(hkt)}} = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)^{1/2}$ $\vec{\epsilon}$ and \vec{H} . when operated upon a given structure, carry the
structure into itself. The structure is said to possess

-
- \blacktriangleright Planes of symmetry.
- \triangleright Centre of symmetry.

- 9. Show the symmetry elements of an equilateral triangle and a square.
- 10. Explain and deduce Bragg's law in X-ray diffraction. SC, BCC, and FCC lattices.
Describe a Bragg's spectrometer and explain how it is a parties the relation between used to determine the wavelength of X-rays. **A substitution** lattice parameter 'a'.
- 11. What is X-ray diffraction ?
- 12. What are the types of X-rays? How they are produced?
- 13. Explain method of producing continuous spectra. Derive the formula for minimum wavelength of the
- 14. State and explain Moseley's Law.
- 15. Write the Maxell's equation in diferent form.
- 16. Derive the formula for electromagnetic wave in free space. space. In this case of the contract of the contract of the lattices.

1. Define atomic radius. Calculate atomic radii in SC. wavelength of X-rays emitting from it. BCC and FCC lattices with suitable diagrams. [4+2]

Lead exhibits FCC structure. Each side of unit cell is of 4.95 A" Calculate radius of lead atom.

2. Derive the relation between interplaner spacing 'd defined by Miler Indices (hk) and lattice parameter $[4 + 2]$

Calculate the interplaner spacing for (220) plane 2. Explain continuous X-ray spectrum with neat where the lattice constant is 4.938A

- 3. What is X-ray? How do we get the continuous
spectrum in X-rays explain. $[4+2]$ spectrum in K-rays explain.
- 4. Derive an expression for electromagnetic wave in free space and hence cakculate the value of velocity of $[6]$ light in free space.

ENGINEERING PHYSICS (BATU) CAYS AND ELECTRONICS CANDING PHYSICS AND ELECTRONICS CANDING PHYSICS AND ELECTROPYNICS

- 1. Define Packing Density. Find the packing density in [6]
- 2. Derive the relation between crystal density 'p' and

The density of copper is 8980 Kg/ m¹ and unit cell dimension is 3.61 A*. Atomic weight of copper is
63.54 Determine crystal structure. [6] 63.54. Detemine crystal structure.

- 3. State and Derive Moseley's law for characteristics X-ray spectrum.
- 4. What is displacement current? Write Maxwell's
equations in differential and integral form. [6] Pacific Control of the State of the Stat

December 2013

- 1. What is primitive and nonpremitive unit cells? Find the number of atoms per unit cell in SC, BCC, FCC [6]
- UNIVERSITY QUESTIONS 2. Define atomic radius. Find the atomic radius in SC, BCC, FCC lattices.
	- December 2017 . State and Derive Bragg's law of X-ray diffraction. An X-ray is operated at 20 kv. Calculate the minimum $[6]$
		- 4. What is displacement current? Write Maxwell's
equations in differential and integral form. equations in differential and integral form.

May 2019

- 1. Define primitive and non-primitive unit cells. Galculate the lattice constant of iron which has BCC . structure. Given p = 7.86 gm/cc, M = 55.85 (6)
	- diagram, An X-ray is operated at 18 kv. Calculate the minimum velocity of electron bombarded at the $[6]$ anoue
	- 3. What is displacement current? Write Maxwell's equation in integral and differential form (6]

UNIT V

٠

MAGNETIC, SUPERCONDUCTING AND SEMICONDUCTING MATERIALS

5.1 INTRODUCTION TO MAGNETIC MATERIALS

- Magnetism finds applications in the understanding of electricity, optics, atomic structure etc. So, it has an important place in physics. Naturally found magnets are weak. However, for strong magnetic fields electromagnets are made use of. The earth itself is a huge and powerful magnet.
- The magnetic materials can be classified as paramagnetic, diamagnetic ferromagnetic, ferrimagnetic and antiferro-magnetic.
- First we will define a few magnetic parameters and derive the relationship between them.

5.2 MAGNETIC PARAMETERS

 \mathcal{A}_1

- Magnetic Field Strength 'H' : The magnitude of the force experienced by an unit north pole at any point in the field is called the strength of the magnetic field at that point. The unit of field is gauss or oersted (C.G.S. unit). In M.K.S. system the intensity of magnetic field is expressed in Newton/Ampere-metre or weber/meter².
- Magnetic Induction or Flux Density 'B' : It is defined as the number of hypothetical induction lines passing normally through unit area. It is measured in Tesla (T) or weber/meter².
	- $B = \phi/A$ where ϕ is the normal flux and A the area of cross-section.
- Intensity of Magnetisation 'M' : It measures the degree of magnetisation of a magnetised specimen and is defined as the magnetic moment per unit volume.

$$
= \frac{\text{Magnetic moment }(\mu)}{\text{Volume (V)}}
$$

Magnetic Susceptibility 'x' : It measures the ease with which the specimen can be magnetised. It is defined as the ratio of the intensity of magnetisation induced in it to the magnetising field strength

$$
\chi = \frac{M}{H}
$$

M

Magnetic Permeability 'µ' : The measure of the degree to which the lines of magnetic force can penetrate the medium is called the absolute permeability of the medium. It is denoted by μ_a .

It is also defined as the ratio of the magnetic induction B produced in a material to the magnetising or induced field H.

$$
\mu = \frac{B}{H}
$$

Also $\mu = \mu_0 \mu_r$

where μ_o is the permeability of free space and is equal to $4\pi \times 10^{-7}$ Henry/meter or is equal to 1 (in C.G.S. units), μ , is the relative permeability which is measured by the ratio of the number of lines of force per unit area in the medium to the number of lines per unit area if the medium were replaced by vacuum. For free space $\mu_r = 1$ and $B = \mu_o H$.

- Bohr Magneton [May 18] : The magnetic moment of \bullet an electron is caused by its orbital or spin orbital momentum.
- The physical constant which represents this magnetic moment is called the Bohr Magneton and is represented by symbol µg.

• In SI system it is given by
$$
\mu_8 = \frac{en}{2m}
$$
 and $\mu_8 = \frac{en}{2mC}$ in
CGS system.

The magnitude of Bohr magneton is equal to 9.274×10^{-24} J/T.

Derivation:

The period of an electron orbiting in orbit of radius r is given by

$$
T = \frac{2\pi}{v} \qquad \qquad \ldots
$$

 $v =$ velocity of electron where

Due to the orbital motion, the current developed is given by,

$$
I = \frac{-ev}{2\pi r} \qquad \qquad \dots \text{II}
$$

 (5.1)

$$
A_{\rm{max}}
$$

$$
\mu = \frac{-e\nu}{2}
$$

Divide and multiply by m, mass of electron

$$
\mu = \frac{-e}{2m} \cdot mv
$$

From Bohr's second postulate

$$
mvr = \frac{n h}{2\pi}
$$

$$
\mu = \frac{-e}{2m} \cdot \frac{n h}{2\pi}
$$

$$
\mu = -n \frac{eh}{4\pi m} \qquad \dots N
$$

The quantity $\frac{eh}{4\pi m}$ is called **Bohr Magneton** (μ_a)

:. Bohr Magneton

 \mathcal{L}_c

or

$$
\mu_B = \frac{e h}{4\pi M} \qquad \dots V
$$

$$
\mu_B = \frac{e h}{2m} \qquad \dots VI
$$

5.3 RELATIONSHIP BETWEEN µ AND x

- Consider a magnetic material of cross-sectional area A and relative permeability µ, to be placed in a uniform magnetic field of strength H.
- Two Types of Lines of Induction Pass Through it:
- 1. Due to the magnetic field.
- 2. Due to magnetisation by induction.

Hence, $B = \mu_0 H + \mu_0 M$ \ldots (A)

where μ_0 is the permeability of free space.

But $B = \mu_0 \mu_r H$ \ldots (B)

From (A) and (B)

 $\mu_0 \mu_1 H = \mu_0 H + \mu_0 M$

i.e. $(\mu, -1)$ H = M

$$
\mu_r - 1 = \frac{M}{H} = \chi \ (\chi \text{ being the susceptibility of}
$$

the material).

BAILES OF MAGNETIC MATERIAL

- FROMe BASU mBXAMS interact only slightly with an **DOWNLOADED** impressed magnetic field. A few substances, however, greatly alter any magnetic field in which they are placed.
	- Consider a simple experiment to indicate the way in which material objects affect magnetic fields. An alternating potential difference is applied across the terminals of a toroidal coil so that current through it varies sinusoidally

$$
Fig. 5.1
$$

- In Fig. 5.1 the voltage induced in the secondary coil can be used to determine the magnetic properties of the material inside the toroid.
- The flux inside such a coil is found to be

$$
\phi = \frac{\mu_0 N i a}{2} ln \left(1 + \frac{a}{b} \right)
$$

N is the total number of loops on the toroid. By Faraday's law, the induced e.m.f. in the secondary coil of N₂ loops wound on the toroid is

$$
\epsilon_2 = -\frac{\mu_0 N N_2 a}{2\pi} ln\left(1 + \frac{a}{b}\right) \frac{di}{dt}
$$

$$
\epsilon_2 = -M_4 \frac{di}{dt}
$$
...(5.2)

where $M_8 = \frac{\mu_0 N N_2 a}{2\pi}$ is the mutual inductance.

Since we known how the current in the toroid changes with time, we can rewrite (5.2) as

$$
\epsilon_2 = -2\pi \int M_\delta \, i_o \cos 2\pi f t \qquad \qquad \ldots (5.3)
$$

- By using an appropriate voltmeter in the secondary coil, the maximum value of ϵ_2 , namely, $2\pi f M_8$ i_o can be measured.
- In obtaining (5.3) it has been assumed that the space in the interior of the coil is empty.

$$
A_{\rm{max}}
$$

$$
\mu = \frac{-e\nu}{2}
$$

Divide and multiply by m, mass of electron

$$
\mu = \frac{-e}{2m} \cdot mv
$$

From Bohr's second postulate

$$
mvr = \frac{n h}{2\pi}
$$

$$
\mu = \frac{-e}{2m} \cdot \frac{n h}{2\pi}
$$

$$
\mu = -n \frac{eh}{4\pi m} \qquad \dots N
$$

The quantity $\frac{eh}{4\pi m}$ is called **Bohr Magneton** (μ_a)

:. Bohr Magneton

 \mathcal{L}_c

or

$$
\mu_B = \frac{e h}{4\pi M} \qquad \dots V
$$

$$
\mu_B = \frac{e h}{2m} \qquad \dots VI
$$

5.3 RELATIONSHIP BETWEEN µ AND x

- Consider a magnetic material of cross-sectional area A and relative permeability µ, to be placed in a uniform magnetic field of strength H.
- Two Types of Lines of Induction Pass Through it:
- 1. Due to the magnetic field.
- 2. Due to magnetisation by induction.

Hence, $B = \mu_0 H + \mu_0 M$ \ldots (A)

where μ_0 is the permeability of free space.

But $B = \mu_0 \mu_r H$ \ldots (B)

From (A) and (B)

 $\mu_0 \mu_1 H = \mu_0 H + \mu_0 M$

i.e. $(\mu, -1)$ H = M

$$
\mu_r - 1 = \frac{M}{H} = \chi \ (\chi \text{ being the susceptibility of}
$$

the material).

BAILES OF MAGNETIC MATERIAL

- FROMe BASU mBXAMS interact only slightly with an **DOWNLOADED** impressed magnetic field. A few substances, however, greatly alter any magnetic field in which they are placed.
	- Consider a simple experiment to indicate the way in which material objects affect magnetic fields. An alternating potential difference is applied across the terminals of a toroidal coil so that current through it varies sinusoidally

$$
Fig. 5.1
$$

- In Fig. 5.1 the voltage induced in the secondary coil can be used to determine the magnetic properties of the material inside the toroid.
- The flux inside such a coil is found to be

$$
\phi = \frac{\mu_0 N i a}{2} ln \left(1 + \frac{a}{b} \right)
$$

N is the total number of loops on the toroid. By Faraday's law, the induced e.m.f. in the secondary coil of N₂ loops wound on the toroid is

$$
\epsilon_2 = -\frac{\mu_0 N N_2 a}{2\pi} ln\left(1 + \frac{a}{b}\right) \frac{di}{dt}
$$

$$
\epsilon_2 = -M_4 \frac{di}{dt}
$$
...(5.2)

where $M_8 = \frac{\mu_0 N N_2 a}{2\pi}$ is the mutual inductance.

Since we known how the current in the toroid changes with time, we can rewrite (5.2) as

$$
\epsilon_2 = -2\pi \int M_\delta \, i_o \cos 2\pi f t \qquad \qquad \ldots (5.3)
$$

- By using an appropriate voltmeter in the secondary coil, the maximum value of ϵ_2 , namely, $2\pi f M_8$ i_o can be measured.
- In obtaining (5.3) it has been assumed that the space in the interior of the coil is empty.

.in

ENGINEERING PHYSICS (BATU)

MAGNETIC, SUPERCONDUCTING AND ...

Experiments can be performed when the interior of the coil is completely filled with some material, and the effect on-the induced voltage ϵ_2 caused by changing the material within the coil can be found. It is found that the value of ϵ_2 does not change if the coil is filled with such very diverse substances as air, water, oil, wood, Al, Cu, plastic etc.

 (5.3)

- Only a very special class of substances, change the induced voltage, by large amount. These are the so called ferromagnetic materials, and they are almost always pure or alloy composition containing iron, cobalt and nickel.
- In 1845 Faraday concluded that all substances were, to a greater or lesser extent affected by a magnet a few being attracted, but most are repelled. This gave rise to the grouping of different substances into
	- > Ferromagnetic like iron, which are strongly attracted
	- > Paramagnetic, feebly attracted and
	- > Diamagnetic which are repelled by a magnet.

Materials can also be classified on the following basis :

- (i) Sign of χ and its value.
- (ii) Value of permeability μ_a .
- (iii) Presence or absence of permanent magnetic dipoles.

5.4.1 Classification on the Basis of χ and μ .

- Paramagnetic : Substances are those for which I varies linearly with H and χ has a small positive value. Also μ_a is slightly greater than 1. Examples are, platinum solutions of salts of iron, oxygen, manganese, palladium etc. For platinum μ = 1.00002 and $\chi = 1.71 \times 10^{-6}$. Also, χ not only decreases with increase of magnetising force but it also depends on the temperature. Curie discovered that the susceptibility of some paramagnetics varies inversely as the absolute temperature.
- **Diamagnetic:** Substances have μ < 1 and χ is constant and has a negative value of the order of 10^{-4} to 10^{-6} . Example, bismuth, antimony, Zn, Ag, Cu, Sb, Au, Fb, water, alcohol, air hydrogen. When placed in a magnetic field they have a tendency to move away from the field.
- Ferromagnetic : Substances are those which can be magnetised to a great extent. They have an abnormally high value of x e.g. steel, iron, cobalt, nickel and alloys

of these substances. In these substances the magnetisation is not proportional to the magnetising force, hence χ and μ vary with the magnetising force considerably. Also x varies with temperature. When a ferromagnetic substance is heated, its x varies inversely as the absolute temperature. This is called as Curies Law and is expressed as χ T = Constant (T being absolute temperature). Thus, x steadily decreases with increase in temperature, until a critical temperature is reached, at which ferromagnetism disappears and the substance becomes paramagnetic. This absolute temperature is called the Curle Temperature. The susceptibility of a ferromagnetic substance above its Curie point is inversely proportional to the amount its temperature is above the Curie temperature.

i.e.
$$
\chi \propto \frac{1}{(T-T_c)}
$$
, T_c being Curie temperature.

This law is called the Curie - Weiss Law.

 \sim

T_c for cobalt is about 1100°C, for nickel 4000°C and for iron 770°C.

Ferromagnetics have non linear variation of μ _a with H i.e. $B \neq \mu_0$ H and hysteresis effect is exhibited.

5.4.2 Classification on the Basic of Presence or **Absence of Permanent Magnetic Dipoles**

[May 18]

- The magnetic materials can also be classified on-the basis of the presence or absence of permanent magnetic dipoles in them. The materials which lack permanent magnetic dipoles are called Diamagnetic. The magnetisation of such materials occurs when the applied field induces a magnetic moment in the individual atoms. Due to the external magnetic field causing changes in the electron orbits. In the absence of the external field, the net magnetic moment of the orbit is zero.
- If permanent dipoles are present in the atoms of a material, it could be Paramagnetic, Ferromagnetic, Antiferromagnetic or Ferrimagnetic. differentiation is done on the basis of interaction between individual dipoles.
	- \rightarrow The substance is diamagnetic if dipole interaction is zero and orientation of individual dipole moment is random. Point the magnetic moments will align with an applied magnetic field.
	- For ferromagnetics, dipoles interact to line up parallel to each other, to give a large resultant magnetisation. This is known as ordered magnetism because of the stronger interatomic interactions.

ENGINEERING PHYSICS (BATU)

(5.4)

٠

- When magnetic moments of equal magnitude are \blacktriangleright present and neighbouring moments are aligned antiparallel, the substance is antiferromagnetic. In these substances, the magnetisation vanishes.
- When unequal magnetic moments are present-and are aligned antiparallel to each otter, the substance is ferrimagnetic. In these substances a net magnetisation exists.

- gentic, ferrom **Fig. 5.2: Para** agnetic, ıtiferromagı and ferrimagnetic arrangement of spins
- Diamagnetism is a universal property of all materials. However, diamagnetic properties are weaker than paramagnetic ones and still weaker than ferromagnetic properties. The presence of a permanent magnetic moment in atoms is a necessary condition for the existence of ferromagnetic properties.
- The pecularities of ferromagnetism are due to the formation of vast regions or domains. In the domains the magnetic moments of a large number of atoms are arranged parallel to one another giving magnetic saturation.

5.4.3 Ferrites [Dec. 18, May 19]

- The ferrites are a type of ceramic compound composed of (Fe₂O₃) combined chemically with one or more additional metallic elements. They are basically ferrimagnetic i.e. they can be magnetised or attracted by a magnet and are electrical insulator.
- The ferrites have a spiral crystal structure and the chemical formula for the ferrites are given as X Y₂ Z₄ in which X is a divalent negative ion. Y is Fe and Z is mostly the divalent oxygen atom.
- The most common ferrite is Fe₃O₄ whose chemical formula can be written as $Fe^{2+}Fe^{3+}_{2}O^{2-}_{4}$. The other divalent metallic ions used are Co²⁺, Mn²⁺, Zn²⁺, Cd²⁺ etc
- The ferrites have wide applications in electrical engineering. The most common application of ferrites are
	- \succ Hard ferrites are used in permanent magnets.
	- \triangleright They are also used in transformer core
	- \triangleright As ferromagnetic insulators in electrical circuits.

\blacktriangleright In type recorder head for recording.

 \succ The main disadvantage is that they have low electrical resistivity.

5.4.4 Garnets

[Dec. 18, May 19]

MAGNETIC, SUPERCONDUCTING AND ...

- Garnets are the group of silicate materials that are being used as gemstone and abrasive. The different types of garnets have similar properties and crystal forms but have different chemical composition.
- The garnets are found in colors like red, orange, yellow, green, etc of which the red color is most common.
- The garnets are nesosilicate having the formula X_3Y_2 (SiO₄)₃ where the X site is occupied by divalent cations Ca²⁺, Mg²⁺, Mn²⁺ and Y by trivalent cations like AP^3 , Fe³, Cr³
- The garnets are crystalline in cubic system having three axis that are of equal length and perpendicular to each other
- The garnets do not show cleavage so under pressure when they fracture irregular pieces are formed.

5.5 HYSTERESIS LOOP (B - H CURVE) Dec 17

- Consider an unmagnetised bar of a ferromagnetic substance. Subject it to a magnetising field as follows:
- To start with, gradually increase the magnetising field H and find the corresponding value of I (the intensity of magnetisation) or of B (the magnetic induction).
- A graph of B verses H gives a curve OAC as shown in Fig. 5.3. If we increase the magnetising force beyond the point C, B remains constant and the substance is said to be Saturated.

Fig. 5.3 : Cycle of magnetisation H-I curve for a ferromagnetic material

After reaching the point C, gradually decrease, the H and obtain the value of 8 (as H decreases). It is found that the curve obtained does not coincide with that obtained with increasing value of H. It takes the form CD

ENGINEERING PHYSICS (BATU)

 (5.5)

- . Thus when the magnetising force is zero, the intensity of magnetisation (or the induction B) instead of being zero has a value = OD .
- This value of intensity of magnetisation for which $H = 0$ is called Residual Magnetism or Retentivity or Remanence.
- If the direction of H is reversed, the curve DEF is obtained. On decreasing H to zero and then increasing in its original direction the curve FGPC is obtained.
- Thus in all cases I (the intensity of magnetisation) or 8 (the induction) appears to lag behind the magnetising force.
- This lagging of B (or I) behind the magnetising force is called Hysteresis. The loop so obtained is called the Hysteresis Loop. The cycle of operation is called Hysteresis Cycle. The magnetising force represented by OE or OG represents the force required to remove the residual magnetism of the bar. Therefore it gives the Coercive Force for the material.
- The shape of the hysteresis loop between B and H is similar to the one between I and H. The areas of loops are different in both the cases.
- In B H curve the intercept on the B-axis is called Remanent induction. In this curve the value of the applied field to make $B = 0$ is not coercivity because

 $B = H + 4\pi l$ (Using the relation in CGS system)

 $B = 0$ When

 $H = -4\pi I$

As I is not zero the specimen is magnetised.

- The hysteresis loop obtained depends entirely on the absence of mechanical vibrations. The mechanical vibrations tend to destroy the retentivity and this results in the partial or complete coincidence of the two sides of the hysteresis loop. The shape of hysteresis loop is a characteristic of the magnetic material.
- Fig. 5.4 shows the shapes B and A in the case of steel and soft iron respectively. From the curves it is seen that soft iron has greater retentivity than steel but less coercivity or in other words, steel retains magnetism A lean locas it

MAGNETIC, SUPERCONDUCTING AND ...

Fig. 5.4 : Hysteresis curve : A - soft iron, B - Hard steel

Fig. 5.5 : Demagnetisation

Demagnetisation:

- In order to demagnetise a substance, it must be taken through a cycle of magnetisation with gradually decreasing magnetising force (Fig. 5.5). To achieve this, insert the bar in a coil through which an alternating current of gradually diminishing value is passed.
- Demagnetisation can also be achieved if the substance is heated above the critical temperature.

5.6 INTRODUCTION TO CONDUCTING MATERIALS

- Solids differ from each other in their physical properties like electrical, optical, mechanical etc. It is desired to understand these physical properties for scientific and engineering application of the material. One of the most important properties from engineering point of view is electrical property. So in this part, we will mainly concentrate on electrical properties.
- With respect to electrical properties, metals are good Conductors whereas other solids can be classified as either Semiconductors or Insulators.
	- In conductors, the electrons are free to move within the specimen. These free electrons are contributed by the atoms within the specimen.

ENGINEERING PHYSICS (BATU)

MAGNETIC, SUPERCONDUCTING AND ...

 \triangleright As the electron moves away from the atom, the atom becomes positive ion. These Positive Ions or Lattice Points are fixed at a particular point and vibrate back and forth from its mean position. Higher the temperature, more will be the amplitude of vibration.

 (5.6)

- Under the influence of electric field, the electrons move freely. But their velocity is reduced with collisions with lattice points. The conducting properties of material is governed by these free electrons and conductivity is reciprocal of resistivity.
- At room temperature, the conductivity of conductors ranges from 10⁶ to 10⁸ mho/m. The conductivity range of semiconductors and
insulators is from 10^{-6} to 10^{4} mho/m and from 10^{-7} 16 mho/m to 10^{-7} mho/m respectively.

5.6.1 Free Electron Theory of Metals

- The free electron theory of metals was first proposed by Drude and later improved by Lorentz and hence the theory is called the Drude-Lorentz theory. Following are the basic assumptions made in the theory :
	- All metals contain a fixed number of valence ÿ. electrons forming an Electron Gas, which are free to move throughout the volume of the metal.
	- The electron velocities in metals obey the classical s Maxwell-Boltzmann Distribution of velocities.
	- \triangleright The positive ions which can vibrate about their mean position, cannot move from one lattice site to another. The repulsive force between the negatively Charged Electron is ignored and the electric field due to the positive ions is assumed to he uniform.
	- \triangleright The electrons move from one point to another randomly with Random Velocity which is temperature dependent. At room temperature, this velocity is about 4×10^5 m/s.
	- The Kinetic Energy of the electron is given by 3 kT/2, where k is Boltzmann's constant and T is absolute temperature.
	- In absence of external electric field, the electrons move in Random Directions, making collisions from time to time with positive ions, which are fixed in lattice. This makes net current zero.
- > When an electric field is applied, free electrons move towards positive terminal of the supply. Thus, the electrons will experience two motions random motion due to temperature and drift motion due to applied voltage. As a result the electron will move in Opposite Direction to the Electric Field while maintaining their random motion.
- While drifting towards positive of the supply, the electrons colloid with positive ions. During each collision the electron loses all its drift velocity and starts from rest once again. The average distance covered by an electron between collisions is known as Mean Free Path '), and time taken to cover this distance is termed as relaxation time 't'.
- As the temperature increases, the vibration of the ion core increases, this increases the probability of electron-core collision. As a result, Resistivity Increases with Increase in Temperature.
- By replacing the classical statistics by Fermi-Dirac statistics, Sommerfeld calculated the conductivity along the line of Lorentz's theory. At equilibrium the free electrons have different velocities. In the absence of electric field, the velocities are in all directions and the velocity vectors cancel each other and net velocity vector is zero.
- The velocity of the electron present in the Fermi level is ٠ called Fermi velocity. When the electric field is applied along X-axis, the electron starts Drifting with Velocity v. and the force experienced by the electron is eE. The forces on the electrons are governed by the equation,

 $E = A$

 $ma = ab$

$$
\therefore m \frac{dv_x}{dt} = \epsilon E
$$

\n
$$
\therefore dv_x = \frac{\epsilon E}{m} dt
$$

\n
$$
\therefore v_x = \frac{dx}{dt} = \frac{\epsilon E}{m} t + k
$$
 ... (5.5)
\nwhere k is constant of integration.
\nAt $t = 0$, $v_x = 0$.
\n
$$
\therefore k = 0
$$

\nSubstituting in equation (5.5),
\n
$$
v_x = \frac{\epsilon E}{m} t
$$
 ... (5.6)

.in

.in

ENGINEERING PHYSICS (BATU)

MAGNETIC, SUPERCONDUCTING AND ...

The average drift velocity is given by, $\overline{v}_x = \frac{eE}{m} \tau$ \dots (5.7) τ = relaxation time where $\tau = \frac{\lambda}{v_{\kappa}}$ where. λ = mean free path

Thus, the average drift velocity is proportional to the applied electric field as $\frac{e\tau}{m}$ is constant. The constant $\frac{e\tau}{m}$ is called Drift Mobility µ.

$$
\overline{v}_k = \mu E
$$

\n
$$
\overline{v}_k = \frac{\overline{v}_s}{E}
$$
 ... (5.8)

Therefore, the drift velocity is defined as the increase in the average electron velocity per unit of electric field. The electrical current density is given by

$$
J = ne \overline{v_x}
$$
 ... (5.9)

where n is the number of electrons per unit volume. From equation (5.7),

$$
y = ne \frac{eE}{m} \tau
$$

$$
y = \left(\frac{ne^{2} \tau}{m}\right) E
$$
 ... (5.10)
The Ohm's law is given by

 $J = \sigma E$

Comparing (5.10) and (5.11), we get electrical conductivity.

$$
\sigma = n \frac{e^2 \tau}{m} \qquad \qquad \ldots
$$

 $... (5.11)$

 (5.12)

The mobility is given by

$$
\mu = \frac{\overline{v}_x}{E} = \frac{eE\tau}{mE} = \frac{e\tau}{m} \text{ using equation (5.7)} \quad \dots (5.13)
$$

$$
\therefore \quad \sigma = \text{ new} \quad \dots (5.14)
$$

The expression is same as that obtained on the basis of classical theory. As charge is constant, the conductivity depends on charges per unit volume n and their mobility μ .

Both the classical and the quantum theories led to the same expressions, there is an essential difference in their approaches. According to the classical theory all free electrons contribute to the electrical conduction whereas according to the quantum theory only those electrons near the Fermi level take part in the electrical conduction.

The quantum free electron theory is successful in explaining many properties of metals like specific heat, electrical and thermal conductivities, magnetic susceptibility etc. The main drawback of this theory of that it has failed to explain why some solids are semiconductors while some others are insulators and why divalent metals have lower conductivities than monovalent metals and why some metals exhibit positive Hall coefficient.

5.6.2 Drawbacks of Classical Free Electron Theory

The free electron theory, successfully established Ohm's law showed that the resistivity is directly proportional to temperature and the Wiedemann-Franz relation was proved. However, the theory has many drawbacks.

The main drawbacks are:

 (5.7)

- > The specific heat capacity value based on classical theory shows that it is independent of temperature. But as per quantum theory, it directly depends on temperature i.e. it increases with the increase in temperature.
- > As per classical theory, the paramagnetic susceptibility is inversely proportional to temperature. But experimental results show that it is almost independent of temperature.
- > The classical theory failed to explain occurrence of long mean free paths (10⁸ or 10⁹ times interatomic spacing).
- Classification of solids i.e. metals, semimetals, semiconductors and insulators cannot be done by classical theory.
- The positive values of Hall coefficient of metals $\overline{}$ could not be explained by classical theory.
- Classical theory also failed to explain photoelectric effect, Compton effect and black body radiation.

SOLVED PROBLEMS

Problem 5.1 : Find the relaxation time of conduction electrons in a metal having resistivity 1.54 \times 10⁻⁸ Ω m and electron density 6.8 $\times 10^{28}$ m³.

> $\rho = 1.54 \times 10^{-8} \ \Omega \text{m}$ $n = 6.8 \times 10^{28} / m^3$

Data:

 \mathbf{I} .in

IJ

 \blacksquare \bullet

$$
p = \frac{m}{ne^2t} \qquad \qquad \dots (5.16)
$$
\n
$$
n = charge density
$$

 $t =$ the average time between collision.

- In metals the charge density 'n' does not changes with temperature. However the increase in temperature can increase the collision of electrons. This reduce t and implies that increase in temperature increase the resistivity.
- However in insulators and semiconductors the charge density 'n' increases with the increasing temperature. Thus an increase in temperature decreases the resistivity.
- The resistivity of semiconductor is given by,

where

wł

$$
\rho = \frac{1}{n_i e (\mu_e + \mu_n)} \qquad \qquad \dots (5.17)
$$

where
$$
n_i
$$
 = charge density in intrinsic semiconductors.

In intrinsic semiconductors the carrier concentration n, increases with temperature as

$$
n_i^2 = A_0 T^3 e^{-6\rho \pi t} \qquad \qquad \dots (5.18)
$$

Here,
$$
A_0
$$
 = Constant independent of temperature

$$
E_0 = \text{Energy gap}
$$

٦

$$
= Absolute temperature
$$

Thus the resistivity of the semiconductor decreases with increase in the temperature.

5.8 MICROSCOPIC OHM'S LAW [May 18]

- When electric current in a material is proportional to \bullet the voltage across it, the material is said to be Ohmic, or to obey Ohm's Law. A microscopic view suggest that this proportionality comes from the fact that an applied electric field superimposes a small drift velocity on the free electrons in a metal.
- For ordinary currents, this drift velocity is of the order ۰ of millimeters per second in contrast to the speeds of electrons them selves which are of the order of 10⁶ m/s. Even by the electron speeds are small, the speed of transmission of electric signal along a wire is very high.

٠ It is a known fact that the resistivity of pure metals decreases with decreasing temperature. When the temperature falls below a certain value (the exact value depending on the substance), the resistivity vanishes entirely.

- In metals, both the thermal vibrations of atoms and the \bullet presence of impurities or imperfections scatter the moving conduction electrons. This gives rise to electrical resistivity. The variation of resistivity for a pure metal and superconductor is shown in Fig. 5.6.
- At the beginning of the twentieth century, in 1908, \bullet H. Kamerling Onnes, a Dutch Physicist, successfully liquified helium. As helium boils at 8.2 K, it therefore became possible to study the properties of materials at low temperature.

 (5.10)

MAGNETIC, SUPERCONDUCTING AND ...

- In 1911, he observed that the electrical resistivity of pure mercury dropped suddenly to zero at about the boiling point of helium. He concluded that mercury had passed into a new state, which he called the Superconducting State due to its remarkable electrical properties.
- The temperature at which the material changes its state from a state of normal resistivity to a superconducting state, is called the Transition or Critical Temperature T.
- A conductor having zero (or almost zero) electrical resistance is called a Superconductor and this phenomenon is called as Superconductivity.

Fig. 5.7: Resistance of mercury as a function of temperature showing a transition from normal state to superconducting state at a critical temperature of 4.2 K

- The superconducting transition is found to be very sharp for a pure metal and it is broad for an impure metal. The zero magnetic induction in a superconductor is responsible for levitation effects.
- In a famous levitation experiment, a horizontal bar magnet was suspended from a chain. It was lowered over a sheet of lead, which had been cooled to the superconducting state. As the magnet came nearer to the superconducting state, the magnet remained floating horizontally over the lead sheet.
- The field of the approaching magnet induces a current on the surface of the superconductor. As the resistance is zero in the superconductor, the current persisted and the field due to the current repelled the bar magnet.
- This persistence of currents is found uniquely in superconductors. Certain experiments on the study of decay of these supercurrents in a solenoid found decay time to be greater than 10⁵ years.

5.10PROPERTIES OF SUPERCONDUCTORS

Following are the properties of superconductors: 5.10.1 Zero Electrical Resistance

- A superconductor is characterized by zero electrical resistance. The temperature below which the resistance of the material vanishes is called as the Transition Temperature or Critical Temperature. It is referred as T_c
- As it is not possible to test experimentally whether the resistance is zero, the specimen is connected in a circuit as shown in Fig. 5.8.

- When the material is in normal conducting state, a \bullet voltage drop is measured across its ends. As the material is cooled below its transition temperature T_o the voltage drop disappears as its resistance drops to zero ($R = V/D$.
- A more sensitive method devised by K. Onnes consists in measuring the decrease of current in a closed ring of superconducting wire.

Table 5.1 : A List of Some Superconductors along with their Critical Temperature

 (5.11)

It has been observed that traces of paramagnetic elements in the specimen can lower the transition temperature. Hence, it becomes necessary to remove these traces completely. Non-magnetic impurities have no marked effect on the transition temperature.

5.10.2 Critical Field: Effect of External Magnetic **Field**

- K. Onnes discovered in 1913 that, when a superconductor is placed in an increasing magnetic field, it loses superconductivity at a certain value H_c of the field. The magnetic field strength at which superconductivity gets destroyed is called the Critical Magnetic Field H. This value is a characteristic of the metal and depends on its orientation in the magnetic field and the temperature.
- The relation between superconductivity and magnetic field plays an important role in the study of properties of superconductors. Obviously, the value of H_c varies with temperature. Fig. 5.9 shows the variation of H_c with temperature for a typical superconductor.

- From Fig. 5.9, consider point P, where the temperature and the magnetic field are within the shaded region, the metal is in the superconducting state. On increasing either the temperature or the field, it can be driven into the normal state. Hence, it can be seen that a superconductor has two possible states: (i) The superconducting one which is resistanceless and perfectly diamagnetic and (ii) A normal state which is the same as a normal metal.
- At any temperature $T < T_c$ the material remains superconducting until a corresponding critical magnetic field is applied. When the magnetic field exceeds the critical value, the material goes into the normal state. The critical field required to destroy the superconducting state decreases progressively with increase in temperature
- For example, a magnetic field of 0.04 T will destroy the superconductivity of mercury at T = 0 K, whereas a field of 0.02 T is sufficient to destroy its superconductivity at $T \approx 3 K$
- The variation of critical field with temperature is given by the relation

$$
H_c(T) = H_c(0) \left[1 - \left(\frac{T}{T_c}\right) \right]
$$

where H_c(0) is the critical magnetic field at 0 K.

5.10.3 Persistent Currents

- Consider a superconducting ring placed in a magnetic field. When cooled to below the critical temperature, it becomes superconducting. The external field induces a current in the ring. When switched off, the current will continue to keep flowing, on its own accord, around the loop, as long as the loop is held below the critical temperature.
- Such a steady current flowing with undiminished strength is called Persistent Current. This current does not need external power to maintain it as there does not exist IPR losses. If the superconducting ring has a finite resistance R, the current circulating in the ring would decrease according to the relation,

$$
I(t) = I(0) e^{-RtA}
$$

where L is the inductance of the ring.

- Calculations show that once the current flow is ٠ initiated, it persists for more than 10⁵ years. Persistent current is one of the most important properties of a superconductor.
- Superconductor coils with persistent currents produce magnetic fields. They can therefore be used as magnets which do not require a power supply to maintain its magnetic field.

MAGNETIC, SUPERCONDUCTING AND ...

5.10.4 Critical Current Density (J.)

- The magnetic field which destroys superconductivity, need not be due to an externally applied field, but it may be the field produced as a result of current flow in the superconductor ring itself. If the field produced by itself exceeds H_o the superconductivity of the ring is destroyed.
- Thus, if a superconducting material carries a current and if the magnetic field produced by it is equal to H_o then superconductivity disappears. The maximum current density J at which superconductivity vanishes is called the Critical Current Density J_c. For J < J_p the current can sustain itself while for $J > J_{\omega}$ the current cannot sustain itself. A superconducting ring of radius R loses its superconductivity when the current is,

$$
I_c = 2\pi RH_c
$$

.. The critical current density,

$$
J_c = \frac{\text{Critical current}}{\text{Area of the ring}}
$$

$$
J_c = \frac{2\pi R H_c}{\pi R^2} = \frac{2H_c}{R}
$$

This sets a limit to the maximum current a superconductor can carry without disturbing its superconducting state.

. As the temperature is raised, the maximum current that a superconductor can carry decreases as the temperature is raised and falls to zero at the transition temperature T_r. This maximum current leads to a maximum applied magnetic field.

Fig. 5.11

MAGNETIC, SUPERCONDUCTING AND ...

- As critical current falls with the temperature, the critical magnetic field will also decrease as the transition temperature is approached. The variation of critical current density J_c and critical magnetic field H_c with temperature is shown in Fig. 5.11.
- Fig. 5.11 shows the combined effects of temperature, current density and magnetic field on a separates boundary superconductor. The superconducting and normal states. Within the boundary, the state is superconducting.

In the superconducting state,

$$
T < T_c
$$
\n
$$
H < H_c
$$

and $1 < l_0$

5.11 MEISSNER EFFECT [Dec. 17, 18, May 19]

Meissner and Ochsenfeld discovered in 1933 that a superconductor completely expels any magnetic field lines that were initially penetrating it in its normal state. This property is independent of the path by which the superconducting state is reached.

Path 1

 (5.12)

The sample is in superconducting state and is brought to the magnetic field. It is found that the magnetic flux is totally expelled from the sample.

Path 2

The magnetic field is applied first to the sample in the normal state. Then the material be cooled to below To in the presence of the magnetic field. Meissner and Ochsenfeld found that the magnetic flux is totally expelled from the sample as it becomes superconducting. This expulsion of magnetic flux during the transition from normal to superconducting state is called as Meissner Effect.

magnetic field, it induces currents which circulate on the surface of the specimen in a manner that it creates a magnetic field everywhere equal and opposite to the applied magnetic field.

Fig. 5.14 : Mels ver effect

- Meissner effect cannot be explained by the assumption ٠ that a superconductor is a resistanceless conductor. A superconductor is not just a perfect conductor but has an additional property. A material in the superconducting state does not permit any magnetic flux to exist within the body of the material.
- When a perfect conductor is cooled in a magnetic field until its resistance becomes zero, the magnetic field in the material is frozen or trapped in the material. It cannot change subsequently, irrespective of the applied field. Therefore, a conductor does not exhibit diamagnetic behaviour even slightly.

$$
\chi = \frac{m}{H} = -1
$$
 (Perfect diamagnetism)

Thus, the superconducting state is characterized by . perfect diamagnetism. Meissner effect conclusively proves whether a particular material has become a superconductor or not. Because of Meissner effect, superconducting materials strongly repel external magnets, it leads to both Levitation Effect and **Suspension Effect.**

5.12 TYPES OF SUPERCONDUCTORS

- There are two types of superconductors: type I and type II. There is no difference in the mechanism of superconductivity in both the types. Both have similar thermal properties at the transition temperature in zero magnetic field.
- The difference lies in their behaviour in a magnetic \bullet field, particularly in Meissner effect.

5.12.1 Type-I Superconductors

In a type-I superconductor, the transition from a superconducting state to normal state, in the presence of a magnetic field, occurs sharply at the critical value H_c. At this point, the field penetrates completely.

ENGINEERING PHYSICS (BATLI)

(5.14)

MAGNETIC, SUPERCONDUCTING AND ...

- Below H. type-I superconductors are perfectly diamagnetic. They completely expel the magnetic field from the interior of the specimen. Upto the critical field strength, magnetization of the material grows in proportion to the external field. At the transition temperature, it suddenly drops to zero to the normal conducting state.
- The magnetic field penetrates only the surface layer and current flows only in this layer. Aluminum and lead are examples of type-I superconductors.
- As superconductivity gets destroyed at low values of critical field, type-I superconductors cannot be used in solenoids for producing large magnetic fields. Such superconductors are also called as Soft **Superconductors.**

Fig. 5.16 : Magnetization curve for a type-I superconde

5.12.2 Type-II Superconductors

Type-II superconductor, also known as Hard Superconductor is characterized by two critical fields H_{c1} and H_{c2} (H_{c1} < H_c < H_{c2}). It exists in three states: super-conducting, mixed and normal.

Superconducting State

This occurs upto a critical field H_{c1}. The magnetization increases with the applied magnetic field and the external magnetic flux is completely expelled from the interior of the material.

Mixed State

- This region extends from H_{c1} to H_{c2} . At H_{c1} , the magnetic flux penetrates the material. Between H_{c1} and H_{cs} , the material is in a mixed state magnetically but electrically it is a superconductor. Meissner effect is incomplete. In this region, the superconductor is threaded by flux lines and is said to be in a Vortex State. Value of H_{c2} may be 100 times higher than H_c (~20 to 50 Wb/m²).
- As superconductivity is retained upto high values of magnetic fields, type-II superconductors are found useful in applications where high magnetic fields are created. Commercial solenoids wound with type-II superconductors produce high, steady magnetic fields above 10 T.
- Once the magnetic field is created by a superconductor solenoid, it does not require electrical power to maintain it. But the solenoid must be kept below critical transition temperature.

Normal State

- When the magnetic field exceeds critical field strength H_{c2}, magnetization vanishes completely. The sample is penetrated by the external field and superconductivity destroyed. The specimen reverts ie. from superconducting state to normal state.
	- Type-II superconductors have a distinguishing feature. The supercurrents arising in an external magnetic field can flow not only on the surface but also in its bulk. The magnitude of the currents carried is also large when the magnetic field is between H_{c1} and H_{c2}

Table 5.2: Types of Superconductor - Differences

5.13 APPLICATIONS OF SUPERCONDUCTIVITY

The phenomenon of superconductivity finds numerous applications which can be broadly classified into two types.

1. Large-Scale Applications

These are applications requiring large currents, long lengths of superconductors in environments where the magnetic field may be several tesla (1 tesla = 104 Oersted). Examples include magnets and power transmission lines, transformers and generators, where current densities of atleast 10⁵ amps/cm² are required.

 (5.15)

MAGNETIC, SUPERCONDUCTING AND ...

Superconductors are more advantageous than normal conductors because of their lower resistance and hence smaller power loss.

2. Small-Scale Applications

These are applications involving minute amounts of current or fields. Examples are detection systems like SQUIDS.

5.14LARGE-SCALE APPLICATIONS

- The cost of energy consumption in the world and the electrical energy in particular are staggering. It is said that about one-fifth the power generated is lost due to I²R losses. The elimination of even a small fraction of the resistive load will have a staggering impact.
- Another important area of application is the use of high temperature superconductors in the production of strong magnetic fields above the 2 Tesla level. This will eliminate the use of iron cores in motors, generators and transformers resulting in reduced size, weight and losses from iron cores.

Wires and Superconducting Magnets

- As $R = 0$ for a superconductor, there are no $I²R$ losses. There is no energy dissipation associated with the flow of a current through a superconductor. A current set up in a closed loop of a superconductor persists, almost forever, without decay.
- · Superconducting wires could be used for very economical long distance power transmission, as energy dissipation is low and electrical power transmission can be done at a lower voltage level. Electric generators made with superconducting wire are more efficient than conventional generators wound with copper wire.

Magnetic levitation (Maglev)

- . The zero magnetic induction in a superconductor is responsible for levitation effects.
- This phenomenon has led to one of the most spectacular applications, maglev or magnetically levitated train. Superconducting magnetic coils produce the magnetic repulsion required to levitate the train. Maglev trains will not slide over the rails but will float on an air cushion over a magnetised track. As there is no mechanical friction, speeds upto 500 km/hr can be achieved easily. As these trains are capable of very high speeds, they can compete with short hop plane flights in crowded air corridors.

.in

ENGINEERING PHYSICS (BATU)

(5.16)

MAGNETIC, SUPERCONDUCTING AND ...

- There are several maglev train test strips and there is talk about a 13 mile commercial line in the Orlando-Florida area and a longer one between Los Angeles and Las Vegas. One proposal is to use an on-board electromagnet to levitate the train above the laminated iron rail in the guide with ~1 cm air gap.
- A second proposal is to use superconducting wire coils in the vehicle to produce a magnetic field of the same polarity as coils in the guides, the repulsive force lifts the vehicle above the track (about 10-15 cm). As iron is not required for the magnetic field, the vehicle could be much lighter.

Electronics Industry

- Superconductors will change the face of the electronics industry, particularly IC fabrication. Currently, due to large amounts of heat generated (I²R losses) there is a limit to the number of components that can be placed on a single chip. With the use of superconductors, more densely packed chips may be used.
- With the use of superconducting chips in digital electronics, logic delays of 13 pico seconds and switching times of 9 pico seconds have been achieved. By using basic Josephson junctions (refer small-scale applications), sensitive microwave detectors, magnetometers and stable voltage sources have been manufactured.

Computer Industry

Currently, logic elements operate at speeds of nanoseconds. By using Josephson junctions. information can be transmitted more rapidly and by several orders of magnitude. Research is being conducted on petaflop computers. A petaflop is a thousand-trillion floating point operations per second. Today's fastest computer has only achieved Teraflop speeds - trillions of operations per second.

Superconducting Magnets

- The most important use of superconductivity has been in the production of high magnetic fields (> 10⁵ Gauss or 10 Tesla) over large volumes without a large consumption of electrical power.
- As superconductors are capable of carrying, without energy loss, about 100 times larger current densities as compared to normal conductors like copper, they can be used for building light weight, high intensity, compact magnets useful in various applications. Relatively small superconducting magnets have very

economically replaced gigantic water-cooled copper conductor magnets which dissipate several megawatts of electrical power. Superconducting magnets (SCM) find application in many areas in technology, including energy storage devices for electrical power industry, electric motor windings, electromagnetic pumps, etc.

- Superconducting magnets are also used in the field of medicine for NMR (Nuclear Magnetic Resonance) imaging particularly for producing NMR tomography. This is of particular importance for investigating pathological changes in the brain. By applying a strong magnetic field from a superconducting magnet across the body, hydrogen atoms inside the body are forced to take up energy from the magnetic field. This energy is then released at a frequency that can be detected and displayed on a computer. This method is called as Magnet Resonance Imaging (MRI) and is widely used in hospitals.
- Superconducting magnets are also used in high energy ្ន physics experiments. Large particle accelerators employ magnets producing high fields for bending and guiding the accelerated particles. Controlled nuclear fusion requires confining high temperature plasma within a closed region. This is done by using superconducting magnets. Superconducting magnets have also been employed for magnetically separating refining ores, isotopes and chemicals.

Military Applications

- Superconductors have found a wide variety of applications in the military. HTSC (high temperature superconductors) are being used to detect mines and submarines.
- Smaller motors are being built by Navy ships using superconducting wires.
- E-bombs have been used by the US army in March 2003 when US forces attacked Iraq. These are devices that use strong superconducting magnets to create a fast, high intensity electromagnetic pulse to disable an enemy's electronic equipment.

5.15SMALL-SCALE APPLICATIONS OF SUPERCONDUCTIVITY

Brian D. Josephson, a graduate student at Cambridge University, in 1962, predicted that electrical current would flow between two superconducting materials even when they are separated by a nonsuperconductor or insulator. This tunneling phenomenon is called as the Josephson Effect.

ENGINEERING PHYSICS (BATU)

 (5.17)

MAGNETIC, SUPERCONDUCTING AND ...

It has been applied to electronic devices such as the SQUID, an instrument capable of detecting and measuring extremely weak magnetic fields.

5.15.1 Josephson Effect

Josephson Junction

Two superconductors connected by a thin layer of insulating material (~ 1-2 nm) is called a Josephson Junction. Under suitable conditions, Josephson found that remarkable effects were associated with the tunneling of superconducting electron pairs from a superconductor, through a layer of an insulator, into another superconductor. This junction is called a Weak Link. The effect found to be associated with the pair tunneling is called Josephson Effect.

Fig. 5.18 : Josephson junction

(i) DC Josephson Effect

When two superconductors are separated by a thin insulating layer, Cooper pairs tunnel through the junction and current flows across the junction without any external applied voltage. If this current does not exceed critical current I_o voltage across the inneriIn such a case, the energies of the Cooper pair on both the sides of the barrier differ by 2 eV. The alternating supercurrents are accompanied by the emission or absorption of electromagnetic radiation.

Fig. 5.20 : AC effect

- If AV is the finite potential difference between the superconductors, the electron pairs on opposite sides of the barrier differ in energy by an amount $2\Delta V = 2$
- Hence, frequency u of the associated photon will be

$$
hv = 2eV \quad \text{or} \quad v = 2\left(\frac{e}{h}\right)V.
$$

Josephson suggested the determination of h/e from this relation after measuring applied voltage and frequency of emitted radiation. This experiment was carried out between 1967 and 1968. It is one of the available fundamental constant. to measure the 5.16 INTRODUL

ENGINEERING PHYSICS (BATU)

 (5.18)

MAGNETIC, SUPERCONDUCTING AND ...

For a better knowledge of semiconductors, one should understand the properties of semiconductors on the basis of band theory of solids. For this, elementary knowledge of electronic configuration of atoms and quantum numbers is quite essential.

5.16.1 Electron Energy States of an Isolated Atom

- An isolated atom of an element with atomic number Z and mass number A consists of a positively charged nucleus, with Z protons and (A - Z) neutrons around which Z electrons revolve in different orbitals. The orbits are characterized by a set of four quantum numbers n, l, m, and m...
- The distribution of electrons in an atom i.e., energy states decide the properties of the element to which the atom belongs. The energy of an electron in an atom depends on n as well as *l* i.e. energy of the electron is a function of n, l or $E = E(n, n)$.
- As n and i can have only discrete values, the energy E will have discrete values. The energy states characterized by n, I numbers are generally degenerate i.e. electrons with different set of quantum numbers will have the same energy, due to different m, values for a given l . The state with same n and l will be $(2l + 1)$ degenerate.
- The number of electrons that can have the same energy E (n, f) with given n and l is 2 (2l + 1), the factor 2 is due to two possible values of m, for each m. The state s is non-degenerate and has two electrons. But p, d, f states are respectively 3-fold, 5-fold, 7-fold degenerate and the number of electrons in those states are 6, 10, 14 respectively.
- As such the energy states of an isolated atom will be quite discrete. The energy states of an isolated lithium atom are shown in Fig. 5.21.

5.17BAND THEORY OF SOLIDS

A solid is an aggregate of atoms in very close proximity. For example, a crystal is a periodic arrangement of atoms in which the structure is built up by a regular repetition of a small unit called a Unit Cell.

- The energy states of an isolated atom consist of discrete energy levels. But when the atoms are brought into close proximity as in a crystal, the outermost or valence electrons of adjacent atoms interact with each other. The inner or non-valence electrons do not interact significantly at any realizable interatomic distance because they are too closely associated with the nuclei.
- As per Paull's exclusion principle, since not more than two interacting electrons may have the same energy level, new levels must be established which are discrete but only infinitesimally different. The separation between split energy sublevel is of the order of 10⁻²⁰ eV. This group of related levels in a polyatomic material is called an Energy Band.
- In short, in crystals or solids, the allowed energy levels of an atom are modified by the proximity of other atoms in such a way that the discrete energy levels of the individual atoms become bands in solids.
- Each band contains as many discrete levels as there are atoms in the material. In a solid containing N atoms, there are N possible energy levels in each band such that, only two electrons of opposite spin may occupy the same energy level. Thus, the N levels will accommodate a maximum of 2N electrons. In other words, a band formed from N atoms contains 2N energy states.

Fig. 5.22 : Formation of energy bands in a diamond crystal

- The imaginary formation of a diamond crystal from isolated carbon atoms is shown in Fig. 5.22. Each isolated carbon atom has an electron structure 1s² 2s² 2p². Each atom has available two 1s states, two 2s states and six 2p states and higher states.
- If we consider N atoms, there will be 2N states of 1s type, 2N states of 2s type and 6N states of 2p type. As the interatomic spacing decreases, these energy levels

ENGINEERING PHYSICS (BATU)

(5.19)

MAGNETIC, SUPERCONDUCTING AND...

split into bands beginning with the outer ($n = 2$) shell. As the 2s and 2p bands grow, they merge into a single band composed of a mixture of energy levels.

- This band of '2s-2p' levels contains 8N available states. As the distance between atoms approaches the equilibrium interatomic spacing of diamond, this band splits into two bands separated by an energy gap or band gap E₉. The upper band is known as the Conduction Band while the lower one is known as the Valence Band. Thus, the conduction band contains 4N states and the valence band also contains 4N states.
- So, apart from the low lying and tightly bound 1s levels, the diamond crystal has two bands of available energy levels separated by energy gap E₉. The energy gap E_o does not contain allowed energy levels for electrons to occupy. This gap is also called as **Forbidden Band.**
- The lower 1s band is filled with 2N electrons which originally resided in the collective 1s states of the isolated atoms. However, there were AN electrons in the original isolated $n = 2$ shell. (2N in 2s states and 2N in 2p states). These 4N electrons must occupy states in the valence band or the conduction band in the crystal.
- At 0 K, the electrons will occupy the lowest energy states available to them. In the case of the diamond crystal, there are exactly 4N states in the valence band available to the 4N electrons. So at 0 K every state in the valence band will be filled while the conduction band will be completely empty of electrons.
- . This arrangement of completely filled and empty energy bands has an important effect on the electrical conductivity of the material. As conduction band is completely empty, the diamond will serve as an insulator

5.17.1 Valence Band, Conduction Band and **Forbidden Energy Gap**

Energy Band

In solids or crystals, allowed energy levels are modified by the proximity of other atoms in such a way that discrete energy levels of individual atoms are converted into series of energy levels. The difference in the energy sublevels is of the order of 10⁻²⁸ eV. This series of energy levels is called Energy Band.

Valence Band

The electrons in the inner shells are strongly bonded to their nuclei while the electrons in the outermost shells are not strongly bonded to their nuclei. It is these

electrons which are most affected, when a number of atoms are brought very close together during the formation of a solid. The electrons in the outermost shell are called Valence Electrons. The band formed by a series of energy levels containing the valence electrons is known as Valence Band.

The valence band may be defined as a band which is occupied by valence electrons or highest occupied energy band. The valence band is completely filled with electrons at 0 K.

Conduction Band

- The next higher permitted energy band is called the Conduction Band. This band may be either empty or partially filled with electrons. Conduction band may be defined as the lowest unfilled permitted energy band. It lies just above the valence band.
- The electrons occupying conduction band are known as Conduction Electrons and these electrons move freely in the conduction band.

Forbidden Gan

- The conduction band and valence band are separated by a region or a gap known as Forbidden Band or Forbidden Gap. This band is collectively formed by a series of nonpermitted energy levels above the top of the valence band to the bottom of the conduction band and is a measure of E_a.
- Thus, E_g is the amount of energy that should be imparted to the electron in the valence band for its migration to the conduction band. These bands are shown in Fig. 5.23.

forbidden gap at T = 0 K

If a valence electron happens to absorb enough energy, it jumps across the forbidden energy gap and enters the conduction band. Also, if a conduction electron happens to radiate too much energy, it will suddenly reappear in the valence band once again.

(5.20)

MAGNETIC, SUPERCONDUCTING AND ...

5.18FERMI ENERGY

(a) Fermi Level in Conductors or Metals

- The statement that a solid is composed of N atoms implies that each atomic level splits into N-energy levels and bands of energy are formed. The filling of the bands follows a simple rule. States of lowest energy are filled first, then the next lowest and so on, till all the electrons are accommodated.
- The highest filled state is called the Fermi level and its corresponding energy is called the Fermi Energy E. The magnitude of E_F depends on the number of electrons per unit volume in the solid because the electron density determines how many electrons must go into the bands.
- At 0 K, all states upto E, are full and all states above E. are empty.
- At higher temperatures, the random thermal energy will empty a few states below E_f by elevating a few electrons to yet higher energy states. No transitions to states below E_f occur as they are full. Thus, an electron cannot change its state unless enough energy is provided to take it above EL.
- The highest filled state in the highest energy band which contains electrons in a metal, at 0 K, is called the Fermi level and its corresponding energy is called the Fermi energy E_F.

(b) Fermi Level in Semiconductors

- In semiconductors, the Fermi level is a reference level that gives the probability of occupancy of states in conduction band as well as in valence band.
- In case of intrinsic semiconductors, the band picture consists of a band of completely filled states called as the Valence Band separated from a band of unoccupied states called as the Conduction Band, by an energy gap E₉. For an intrinsic semiconductor, the Fermi level lies at the centre of the forbidden band, indicating that the states occupied in conduction band are equal to the states unoccupied in valence band. In other words, for every electron in the conduction band. there is a hole in the valence band.
- So Fermi level in the semiconductors may be defined as the energy which corresponds to the centre of gravity of conduction electrons and holes when Weighted according to their energies.

However, it is to be noted that Fermi level is only an abstraction. A hollow body can have a centre of gravity at the centre where there is no matter. Similarly, a material can have a Fermi level at an energy which is forbidden to all electrons. For example, in an intrinsic semiconductor, the Fermi level is at the centre of the forbidden band

5.19 CONDUCTIVITY OF SEMICONDUCTORS

5.19.1 Conductivity of Conductors

According to the free electron model of an atom, the valence electrons are not attached to individual atoms. They move about freely along all directions among the atoms. These free electrons are called as conduction electrons and they form the Free Electron Cloud or Free **Electron Gas or Fermi Gas.**

Fig. 5.25 : Current flow in conductors

 $\sqrt{ }$

 \bullet

ENGINEERING PHYSICS (BATU) MAGNETIC, SUPERCONDUCTING AND ... (5.22) .. The current density and the current due to holes is given by $I_p = n_p v_p Ae$ \dots (5.33) Therefore, total current flowing through the semiconductor From (5.41) and (5.42), will be. $J = \sigma E$ Total current, $I = I_e + I_p$ **Case (i): Intrinsic Semiconductor** $1 = n_e v_e Ae + n_p v_p Ae$ 1 = Ae $(n_e v_e + n_p v_p)$ \dots (5.34) \mathcal{L} holes are exactly same, The drift velocity of a charged particle in electric field E is, $n_e = n_p = n_i$ $v = \mu E$ \cdot For electrons $v = u$. $\sigma_i = e n_i (\mu_e + \mu_p)$ and for holes, $v_0 = \mu_0 E$ $E = \frac{V}{I}$ But $v_e = \mu_e \frac{V}{l}$ $\tilde{\chi}$ \dots (5.35) \mathcal{C}_i Hence $\sigma_N = e n_e \mu_e$ $V_p = \mu_p \frac{V}{I}$ \dots (5.36) donor atoms, then, Substituting equations (5.35) and (5.36) in equation (5.34), we get 1 = Ae $\left(n_e \mu_e \frac{V}{I} + n_p \mu_p \frac{V}{I}\right)$ Then $1 = \frac{AeV}{l} (n_e \mu_e + n_p \mu_p)$ \dots (5.37) \mathcal{A}_{\bullet} . $\sigma_{\rm p} = e n_{\rm p} \mu_{\rm p}$ $R = \frac{V}{I} = \frac{I}{Ae (n_e \mu_e + n_p \mu_p)}$ \dots (5.38) \mathcal{C} (as $n_p \approx n_a$) $R = \rho \frac{l}{\Delta}$ But \dots (5.39) .. Resistivity of the given semiconductor is given by Given: $n_i = 2 \times 10^{19} / m^3$ [comparing equations (5.38) and (5.39)], $e = 1.6 \times 10^{-19}$ C $\mathbf{1}$ $p = \frac{1}{e (n_e \mu_e + n_p \mu_p)}$ ohm-m ... (5.40) The conductivity is reciprocal of resistivity. Solution: Data: $A = 1 \times 10^{-4}$ m³ ..Conductivity $V = 2$ volts $\sigma = \frac{1}{\rho}$ = e (n_e μ_e + n_p μ_p) mho/m \dots (5.41) Hence, conductivity in a semiconductor is a sum of Formula: conductivity due to both electrons and holes. Or. $\sigma_{\rm sc} = \sigma_{\rm e} + \sigma_{\rm p}$ Solution: From equation (5.34), $\frac{1}{A}$ = e (n_e μ_e + n_p μ_p) E $=$ 1.13 amp.

 $J = \frac{I}{A} = e (n_e \mu_e + n_p \mu_p) E$... (5.42) For intrinsic semi conductors, number of electrons and :. Conductivity of an intrinsic semiconductor is Case (ii): N-type Extrinsic Semiconductor For N-type semiconductors, electron concentration is much greater than the hole concentration. $n_e \gg n_p$ or $n_e \mu_e \gg n_p \mu_p$ If n_a is electron concentration or concentration of $\sigma_N \approx e n_d \mu_e$ (as $n_e \approx n_d$) Case (iii): P-type Extrinsic Semiconductor · In P-type semiconductor, electron concentration is negligibly small in comparison to hole concentration. $n_p \gg n_e$ or $n_p \mu_p \gg n_e \mu_e$ • If n_a is acceptor atom concentration then $\sigma_p \approx e n_a \mu_p$ Problem 5.5: Calculate the current produced in a small Germanium plate of area 1 cm² and of thickness 0.3 mm when a P.D. of 2 V is applied across the faces. $\mu_e = 0.36 \, \text{m}^2/\text{volt-sec}$ $\mu_b = 0.17 \frac{m^2}{v}$ olt-sec $l = 0.3$ mm = 0.3×10^{-3} m $I = n_i e (\mu_e + \mu_i) \frac{V}{l} A$ $I = 2 \times 10^{19} \times 1.6 \times 10^{-19}$ $(0.36 + 0.17) \frac{2 \times 10^{-4}}{0.3 \times 10^{-3}}$

 \ln

MAGNETIC, SUPERCONDUCTING AND ...

 $(5,23)$

ENGINEERING PHYSICS (BATU)

Κ

ity added is 1 in 10⁸ 3 ec $ume = 5 \times 10^{22}$. er 10 silicon atoms, n-
atoms/unit volume
.0⁸ $\overline{4}$ and n >> p, hole $0^{-19} \times 1300$ ergy gap is 0.75 eV.
ermanium starts to tor is the minimum.

n the top of valence band. If photons of material to enable

 $\lambda = 1653 A^{\circ}$

 $\dot{\mathbf{r}}$

 $\begin{bmatrix} 2 & 1 \ 1 & 1 \end{bmatrix}$

 $\hat{\mathbf{g}}_k$

 \bullet

.in

Problem 5.11: Calculate the average thermal velocity, the drift velocity and the mobility of electrons in copper in an electric field of 100 V/cm. Calculate also the density of the electric currents. The resistivity of copper is 1.72×10^{-8} ohmm at 25°C. Boltzmann constant is 1.38×10^{-23} J/K, density of copper is 8.9×10^3 kg/m³ and At. wt. is 63.54. **Data:** E = 100 V/cm, $p = 1.72 \times 10^{-8} \Omega$ -m,

 (5.24)

 $k = 1.38 \times 10^{-23}$ J/K, density = 8.9 \times 10³ kg/m³, At. wt. = 63.54 .

Formulae: (i) $v = \sqrt{\frac{3kT}{m}}$, (ii) $v_d = \mu E$, (iii) $\sigma = n e \mu = \frac{1}{\rho}$

Solution: At equilibrium, the electrons follow the Maxwell-Boltzmann distribution. So their average K.E. for each degree of freedom is $\frac{1}{2}$ kT. For particles moving in three dimensions, we can write,

$$
\frac{1}{2}mv^{2} = \frac{3}{2}kT
$$
\n
$$
v = \left(\frac{3kT}{m}\right)^{1/2}
$$
\n
$$
= \left(\frac{3 \times 1.38 \times 10^{-23} \times 298}{9.1 \times 10^{-31}}\right)^{1/2}
$$
\n
$$
v = 1.16 \times 10^{5} \text{ m/sec.}
$$

Since each copper atom contributes one valence electron to the conduction band, the number of electrons/m³ will be equal to the number of copper atoms/m³. $6.02 \times 10^{26} \times 8.9 \times 10^{3}$

∴ No. of electrons/m³ = n =
$$
\frac{6.02 \times 10^{23} \text{ atoms/m}^3}{63.54}
$$

= 0.84 × 10²⁹ atoms/m³
Mobility $\mu = \frac{1}{\rho \text{m}e}$
 $\mu = \frac{1}{1.72 \times 10^{-8} \times 0.84 \times 10^{29} \times 1.6 \times 10^{-19}}$
= 4.33 × 10⁻³ m²/volt-sec
Drift velocity $v_d = \mu \cdot E$
= 4.33 × 10⁻³ × 100
 $v_d = 0.433 \text{ m/sec.}$

Problem 5.12: Calculate the conductivity of pure silicon at room temperature when the concentration of carriers is 1.6×10^{10} /cm³.

 $\mu_{\rm e}$ = 1500 cm²/volt-sec

- μ_h = 500 cm²/volt-sec at room
	- temperature

MAGNETIC, SUPERCONDUCTING AND ... $n_1 = 1.6 \times 10^{10}$ /cm³ Data: μ_e = 1500 cm³/V-sec $\mu_n = 500 \text{ cm}^3/\text{V}$ -sec Formula: $\sigma_{in} = \sigma_n + \sigma_p$ Solution: σ_{in} = $n_i e (\mu_e + \mu_n)$ $= 1.6 \times 10^{10} \times 1.6 \times 10^{-19} (1500 + 500)$ $= 5.12 \times 10^{-6}$ mho/cm

5.20 HALL EFFECT AND HALL COEFFICIENT 5.20.1 Hall Effect [Dec. 17, 18, May 19]

- . It often becomes necessary to determine whether a material is an N-type or a P-type semiconductor. Measurement of conductivity alone does not give this information as no distinction can be made between hole and electron conduction.
- . Hall effect is used to differentiate between the two types of carriers. It provides a means of determining the density and mobility of charge carriers and gives information about the sign of the predominant charge carrier.
- \cdot If a piece of conductor (metal or semiconductor) carrying a current is placed in a transverse magnetic field, an electric field is produced inside the conductor in a direction normal to both the current and the magnetic field. This phenomenon is known as Hall Effect and the voltage so generated is called as **Hall Voltage.**

Explanation of the Effect

 $\ddot{}$

- Assume that the sample material is an N-type semiconductor. The current flow consists, almost entirely, of electrons moving from right to left. This movement corresponds to the direction of conventional current from left to right as shown in Fig. 5.27 (a).
- . If v is the drift velocity of the electrons moving perpendicular to the magnetic field B, there is a downward force Bev acting on each electron. This causes the electrons to be deflected in the downward direction. This makes negative charges to accumulate on the bottom face of the slab [See Fig. 5.27 (b)] leaving positive ions on the top surface.

This gives rise to a potential difference along the top and bottom faces of the specimen across points M and N with the bottom face being negative. This potential difference causes a field E_H in the negative y-direction

and so a force eE_H acts on the electrons in the upward direction.

 (5.25)

 \mathcal{L}

 $... (5.45)$

Under equilibrium, the upward force due to the electric field just balances the downward force due to the magnetic field.

Thus,
$$
eE_H = eBv
$$

 $E_H = vB$ $... (5.43)$ $\mathcal{P}_\mathcal{C}$

• If I is the current in the x-direction then,

$$
1 = n \vee Ae
$$

or
$$
v = \frac{1}{neA} \qquad \qquad \dots (5.44)
$$

where n is the concentration of charge carriers.

$$
\therefore \qquad \qquad \mathsf{E}_{\mathsf{H}} = \frac{\mathsf{B I}}{\mathsf{neA}}
$$

Also

Fig. 5.28 : Motion of electrons in an n-type semiconductor

MAGNETIC, SUPERCONDUCTING AND ...

where V_H is the Hall voltage named after the scientist Hall who first predicted and measured the Hall voltage. \mathbf{u} . T. (5.46) \mathcal{N}_c

$$
\therefore \quad V_H = E_H d
$$
\nSubstituting this in expression (5.45),\n
$$
1 = R H
$$

$$
V_H = \frac{1}{ne} \frac{one}{A} \qquad \qquad \dots (5.47)
$$

or
$$
V_H = R_H \frac{du}{A}
$$
 ... (5.48)
where $R_H = \frac{1}{ne}$

is the Hall coefficient for any charge e. \dots (5.49)

If J_x is the current density of charge carriers in ٠ x-direction then,

$$
V_H = \frac{1}{ne} \cdot B \cdot J \cdot d
$$
 (as $J = \frac{1}{A}$) ... (5.50)

In this specimen, as the dominant charge carriers are electrons,

$$
V_H = -\frac{1}{ne}
$$
 B J d ... (5.51)

In expression (5.50), all three quantities V_H, B and J can ٠ be measured. Hence, Hall coefficient and current density can be found.

Fig. 5.29 : Motion of holes in p-type semicondu

- \bullet Similarly, formulae can be derived for P-type semiconductors. All the formulae are same except that the Hall coefficient will be positive.
- The sign of the Hall voltage gives the sign of the \bullet charge carrier and this provides one of the few methods by which the sign of the charge carrier can be ascertained.

$$
\therefore \text{ Hall voltage, } V_H = R_H \cdot \frac{BId}{A} = R_H B J d \qquad \dots (5.52)
$$

5.20.2 Hall Coefficient
$$
(R_H)
$$
 [Dec. 17. May 19]

The Hall coefficient R_{H} is determined by measuring the ٠ Hall voltage that generates the Hall field. If V_H is the Hall voltage across the sample of thickness d then $V_H = E_H d$

 $... (5.53)$

.in

ENGINEERING PHYSICS (BATU)

 (5.26)

 \dots (5.54)

MAGNETIC, SUPERCONDUCTING AND ...

Also, the Hall voltage is given by,

$$
V_H = R_H \frac{BId}{A}
$$

If w is the width of the sample, then its cross-section will be dxw

$$
\therefore \qquad V_H = R_H \frac{B Id}{dw} = R_H \frac{BI}{w} \qquad \qquad \dots (5.55)
$$
\nor\n
$$
R_H = \frac{w}{BI} V_H = \frac{1}{nq} \qquad \qquad \dots (5.56)
$$

In the case of semiconductors, the interpretation becomes more complex. However, it should be noted that the Hall voltage varies inversely as n, so one would expect it to be larger for semiconductors than for metals.

5.20.3 Applications of Hall Effect

Determination of Type of Semiconductor

For an N-type semiconductor, the Hall coefficient is negative whereas for a P-type semiconductor, it is positive. Thus, the sign of Hall coefficient is used to determine whether a given semiconductor is N or Ptype

Calculation of Charge Carrier Concentration

The Hall voltage V_H is measured by placing two probes at the centres of the top and bottom faces of the

sample as shown in Fig. 5.29. If B is the magnetic flux density, then

$$
n = \frac{1}{e} \cdot \frac{BId}{A} \cdot \frac{1}{V_H}
$$

Current I is measured using a current measuring device. Therefore, R_H and hence n can be calculated.

Determination of Mobility

If conduction is due to one type of charge carriers, for example electrons, then

$$
\sigma = ne \mu_e
$$

$$
\mu_e = \frac{\sigma}{ne} = \sigma R_H
$$

$$
\mu_e = \sigma \cdot \left(\frac{V_H A}{B1 d}\right)
$$

Knowing σ, and measuring other parameters as in the above applications, the mobility of electrons μ_e can be determined.

Problem 5.13: Find the drift velocity for the electron in silver wire of radius 1.00 mm and carrying a current of 2 amperes. Density of silver is 10.5 g/cm³.

Data:
$$
r = 1.00
$$
 mm, $I = 2$ amp, density = 10.5 g/cc
Formula: $v = \frac{I}{I}$

$$
a_{\mathbf{m}} = a_{\mathbf{m}} \cdot \mathbf{A}
$$

Solution: $I = qnvA$ Silver is monovalent. So each atom may be assumed to

contribute one electron. One gram atomic weight of silver, 108 g, has 6×10^{23} atoms (Avogadro's number).

The density of silver is 10.5 g/cm³. So 108 g will occupy $108/10.5 \approx 10.3$ cm³.

Number of electrons per
\n
$$
n = \frac{6 \times 10^{23}}{10.3} = 6 \times 10^{22}
$$

\nor
\n $n = 6 \times 10^{28}$ per m³

The cross-sectional area of wire,
$$
100^{21}
$$

A =
$$
\pi r^2 = \pi (10^{-3})^2 \approx 3 \times 10^{-6} \text{ m}^2
$$

\nNow, $v = \frac{1}{q \times n \times A}$
\n $= \frac{2}{(1.6 \times 10^{-19}) \times (6 \times 10^{28}) \times (3 \times 10^{-6})}$
\n[$v = 7 \times 10^{-5} \text{ m/sec.}$]

Problem 5.14: Find the current density in the wire of the preceding example.

Solution: Current density

 \mathcal{P}_\bullet

$$
J = \frac{I}{A} = \frac{2.0 \text{ amperes}}{3.0 \times 10^{-6} \text{ m}^2}
$$

$$
J = 6.7 \times 10^5 \text{ A/m}^2
$$

Problem 5.15: A silver wire is in the form of a ribbon 0.50 cm wide and 0.10 mm thick. When a current of 2A passes through the ribbon perpendicular to a 0.80 T magnetic field, how large a hall voltage is produced along the width ? The density of silver is 10.5 g/cm³.

Data: $d = 0.50$ cm, $t = 0.10$ mm, $l = 2$ amp, $B = 0.80$ T, density = 10.5 g/cc.

 $V_H = \frac{1}{nq} \cdot \frac{BId}{A}$ Formula:

 \ln

and this

 $\leq H_c$ and

 $\dot{\mathbf{r}}$

 $\frac{a}{\sqrt{a}}$

or magnetic field is known as dc Josephson effect.

INCHNIERENING HFTSCS (BATI)	
Solution: The atomic weight of silver is 108, so the number	Hysterics Curve: A plot of 8-H of a magnetic material of atoms in 1 cm ³ is
n = (6 × 10 ²³) $\frac{10.5}{10.8}$ = 6 × 10 ²³ per cm ¹ A = 0.05 × 0.001 = 5 × 10 ⁻⁵ m ²	
1: Number of electrons per m ³ = 6 × 10 ²⁴ A = 0.05 × 0.001 = 5 × 10 ⁻⁵ m ²	
1: Number of electrons per m ³ = 6 × 10 ²⁴ A = 0.05 × 0.001 = 5 × 10 ⁻⁵ m ²	
1: Number of electrons per m ³ = 6 × 10 ²⁴ A = 0.05 × 0.001 = 5 × 10 ⁻⁵ m ²	
1: Number of electrons per m ³ = 6 × 10 ²⁴ A = 0.05 × 0.001 = 5 × 10 ⁻⁵ m ²	
1: Number of electrons per m ³ = 6 × 10 ²⁴ B = 6 × 10 ²⁴ m ² km ² cm ² cm ²	
1: Math: the heat in the center, the perimeter is 104 km/s k is given by 1 = 65 10044 km/s k is given by 1 = 65 1044 km/s k is given by 1 = 65 1044 km/s k is given by 1 = 65 1044 km	

 \bullet

(iv) Ferromagnetic.

 \blacksquare

.in

Ac Josephson Effect : When a dc voltage is applied across the Josephson junction, RF current oscillations are setup across the junction along with the emission $\sigma = n_e e \mu_e$ or absorption of electromagnetic radiation. This is For a Semiconductor known as ac Josephson effect. $\sigma_{sc} = e (n_e \mu_e + n_p \mu_p)$ Energy Bands : In crystals or solids, the allowed energy levels of an atom are modified by the proximity of other atoms in such a way that the discrete energy \mathbf{M} levels of the individual atoms become bands. Each $en_a\mu_b$ band contains as many discrete levels as there are atoms in the material. $=$ e n_d μ_a Elements are Classified as (i) Conductors, ٠ (ii) Semiconductors and (iii) Insulators. Valence Band : The band formed by a series of energy levels containing the valence electrons. the Fermi energy (EF). Conduction Band : The lowest unfilled permitted ۰. energy band is called the conduction band. Band Gap : The energy required for an electron to jump from the valence band to the conduction band is called the Band Gap or forbidden gap of the semiconductor. Semiconductors : Materials having properties intermediate between those of conductors and occupied by an electron at TK. insulators Semiconductors are of Two Types : (i) Intrinsic and $P(E) =$ $1 + e^{(E-E_F)/kT}$ (ii) Extrinsic ٠ Intrinsic Semiconductors are those which are pure (free from electroactive and crystalline defects). $E_F = \frac{E_c + E_v}{2}$ Doping is the process of adding an impurity to intrinsic semiconductors to increase its conductivity. Extrinsic Semiconductors are obtained by doping an intrinsic semiconductor. They are of two types: (i) pare the majority charge carriers. type extrinsic semiconductor, (ii) n-type extrinsic semiconductor. majority charge carriers. P-Type Semiconductor : An extrinsic semiconductor formed by doping a trivalent impurity is called a p-type ¥ semiconductor. In this type, holes are the majority charge carriers and electrons are the minority charge carriers. N-Type Semiconductor : An extrinsic semiconductor voltage. formed by doping a pentavalent impurity is called as n-Hall Voltage, $V_H = R_H \cdot \frac{BId}{A}$ type semiconductor. In this type, electrons are the majority charge carriers and holes are the minority charge carriers.

ENGINEERING PHYSICS (BATU)

Conductivity:

 (5.28)

For a Metal, electrical conductivity,

> For an intrinsic semiconductor, $\sigma_{in} = e n_i (\mu_e + \mu_p)$

MAGNETIC, SUPERCONDUCTING AND ...

- For a p-type extrinsic semiconductor, σ_p = e $n_p \mu_p$ =
- > For an n-type extrinsic semiconductor, $\sigma_n = e n_e \mu_e$
- Fermi Energy (E_r) : The highest filled state in the highest occupied energy band at 0 K is called the Fermi level for a metal. The corresponding energy is called
- Fermi Level in Semiconductors is defined as the energy which corresponds to the centre of gravity of conduction electrons and holes when weighted according to their energies. It is a reference level that gives the probability of occupancy of states in conduction band as well as in valence band.
- The Fermi-Dirac Probability distribution function P(E) gives the probability that an energy state of energy E is
- The Fermi Level in intrinsic semiconductors is exactly in the middle of the forbidden gap.
- The position of the Fermi level in a P-Type Extrinsic Semiconductor is close to the valence band as holes
- The Fermi level in an N-Type Extrinsic Semiconductor is close to the conduction band as electrons are the
- Hall Effect : When a current carrying specimen (I) is placed in a transverse magnetic field (B), an electric field 'E' is induced in the specimen perpendicular to both I and B. This phenomenon is called as Hall effect and the voltage hence developed is called as Hall
- **Hall Coefficient**, $R_H = \frac{1}{nQ}$

which

IMPORTANT FORMULAR	MSD	MAMENT, $\sigma_p = n_{\text{ref}} = n_{\text{ref}}$ (for p-type)																				
\n Diff velocity , $\sigma_z = \frac{m}{m} \vec{t}$ \n	\n Moditivity, $\sigma_z = \frac{m}{m} \vec{t}$ \n	\n Moditivity, $\sigma_z = \frac{m}{m} \vec{t}$ \n	\n Moditivity, $\sigma_z = \frac{m}{m}$ \n	\n Moditivity, $\sigma_z = \frac{m}{$																		

-
- 9. The resistivity of copper wire of diameter 1.03 mm is 6.51 ohm per 300 m. The concentration of free electrons in copper is 8.4 \times 10²⁸ / m³. If the current is 2 A, find (a) mobility, (b) drift velocity, (c) conductivity.

[Ans. 0.413 m²/volt-sec, 0.286 × 10⁻²⁰ m/sec,

- 55.5×10^8 mho/m] 10. Calculate the energy gap in silicon if it is given that it is transparent to radiation of wavelength greater than 11000 A°. **[Ans. 1.13 eV]**
- An N-type semiconductor is to have a resistivity of 10 11. ohm-cm. Calculate the number of donor atoms which must be added to achieve this. Assume, $\mu_e = 500$ cm²/volt-sec. [Ans. 12.5×10^{23}]

EXERCISE

- 1. What is magnetic material? Give the types of magnetic material?
- $\overline{2}$ Explain the hystersis curve. Classify magnetic materials on the basis of hytersis curve.
- Discuss the Drude-Lorentz classical free electron $3.$ theory.
- Derive the formula for the electrical conductivity. \mathbf{A}
- 5 Derive the relation between mobility and conductivity.
- What are the assumptions of classical free electron 6. theory ? Derive expression of conductivity of metals.
- \overline{L} Write short notes on (a) Relaxation time, (b) Mean free path, (c) Collision time, (d) Drift velocity, (e) Mobility.
- State an explain microscopic ohm's law. Derive 8. formula for it.
- Explain the effect of temperature on conductivity of a 9 material.
- What is superconductivity ? What are the 10 characteristics of superconductors?
- 11. Explain Meissner effect, isotope effect, critical temperature and critical field.
- $12²$ What are the types of superconductors ? Where do they find application?
- different 13. Enumerate the applications of superconductors. How are they advantageous as compared to normal conductors?
- $14.$ Explain some properties of type-I and type-II superconductors.
- 15. Describe in brief the formation of energy bands in solids.
- 16. Explain the terms : valence band, conduction band and forbidden energy gap.
- 17. Derive an expression for conductivity in an intrinsic and extrinsic semiconductor.
- 18. Explain Hall effect and Hall coefficient.
- 19. What is Fermi energy ? Show the location of Fermi energy levels in intrinsic and extrinsic semiconductors.

MAGNETIC. SUPERCONDUCTING AND ...

- 20. State Hall effect. Derive the formula for Hall voltage and Hall coefficient.
- 21. What is Fermi function ? Show that the Fermi level lies at the centre of the energy gap in an intrinsic semiconductor.
- State and explain the applications of Hall effect.
	- **UNIVERSITY QUESTIONS**

December 2017

- 1. On the basis of domain theory explain B-H curve and hence explain retentively and coactivity. **T61**
- What is Superconductivity ? Explain Meissner Effect $\overline{2}$ in Superconductors. $[2+4]$
- What is Hall effect? Derive an expression for Hall \overline{a} Coefficient. [6]

May 2018

- 1. Discuss the different types of magnetic materials interms of magnetic moments. [6]
- 2. Prove Bohr magneton μ _a = eh/ 2m. Differentiate between hard and soft magnetic materials. $[6]$
- What is Microscopic Ohm's Law? Differentiate between Type I and Type II superconductors. $[6]$
- 4. Derive an expression for conductivity in an intrinsic and extrinsic semiconductor. **T61** Calculate conductivity of pure silicon when the concentration of carriers is 1.6×10^{10} /cm¹, and μ e = 1500 cm²/V-s, μ h = 500 cm²/V-s.

December 2018

- 1. What are Ferrites and Garnets? Write their general formula. Determine the magnetization and flux density of the diamagnetic, if its magnetic
susceptibility is -0.4×10^{-5} and magnetic field in it is $10⁴$ A/m. [6]
- 2. Prove Bohr Magnetron μ_B = eh/2m. Differentiate between hard and soft magnetic materials. [6]
- 3. What is Superconductivity? Explain Meissner effect in superconductor. $[6]$
- What is Hall effect? Derive an expression for Hall coefficient of p and n type semiconductor. [6] **May 2019**

- 1. Write formula of Ferrites and Garnets. 2. Explain Meissner effect in superconductors.
- What is Hall Effect? Derive an expression for $3.$ Hall voltage VH and Hall coefficient R_H. $[6]$

[6]

经图图

Made by batuexams.com

at MET Bhujbal Knowledege City

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.